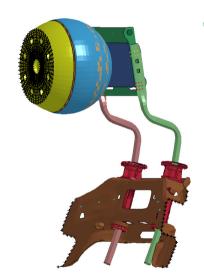
Parameteridentifikation für PA66 am Beispiel einer Kopfstützenhülse

A. Haufe, S. Keßler, J. Effelsberg

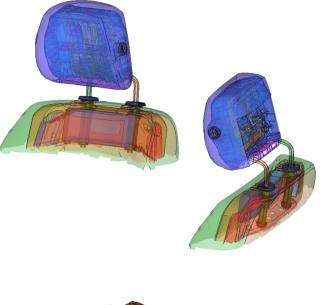
DYNAmore GmbH

26. Oktober 2012


- Die Motivation: Kopfstützenhülse
- Der Werkstoff: PA66
- Das Materialmodell: SAMP
- Das Vorgehen: Materialkartenanpassung
- Das Ergebnis

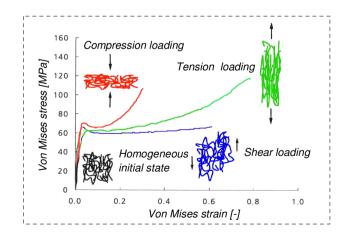
- Die Motivation: Kopfstützenhülse
- Der Werkstoff: PA66
- Das Materialmodell: SAMP
- Das Vorgehen: Materialkartenanpassung
- Das Ergebnis

Die Motivation: Kopfstützenhülse


→ Wird das Materialverhalten der Kunststoffhülsen richtig abgebildet?

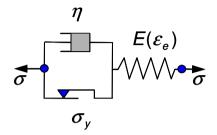
Studien an geeigneten Komponentenversuchen

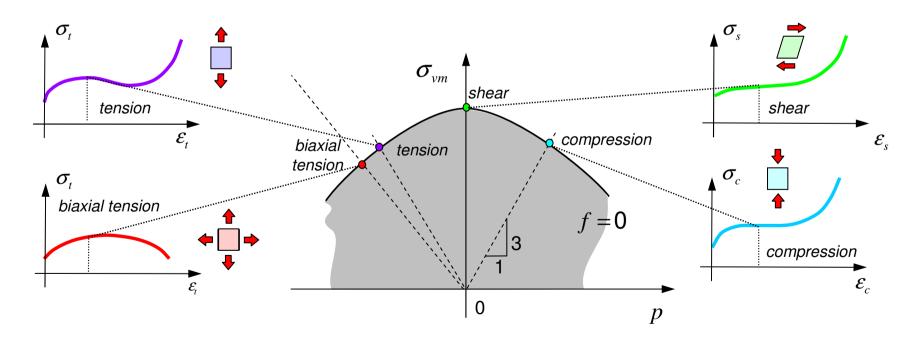
- Materialbezeichnung auf den Hülsen: PA66
- quasistatische Materialkarte liegt vor



- Die Motivation: Kopfstützenhülse
- Der Werkstoff: PA66
- Das Materialmodell: SAMP
- Das Vorgehen: Materialkartenanpassung
- I Das Ergebnis

Der Werkstoff: PA66

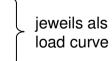

- Bezeichnungen:
 - PA66 = PA 6.6 ("Nylon")
 - Polyamid, teilkristalliner thermoplastischer Polymer, synthetisch hergestellt
- Eigenschaften:
 - Unverstärkt: enthält keine Glasfasern/-matten
 - Dehnratenabhängig (gilt auch für E-Modul)
 - Hygroskopisch: Reaktion auf Feuchtegehalt der Umgebung mit reversibler Wasseraufnahme/-abgabe
 - → Einfluss der Feuchtigkeit auf mechanische Eigenschaften

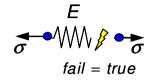


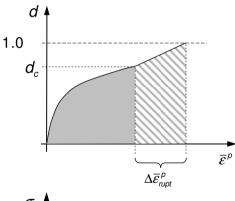
- Die Motivation: Kopfstützenhülse
- Der Werkstoff: PA66
- Das Materialmodell: SAMP
- Das Vorgehen: Materialkartenanpassung

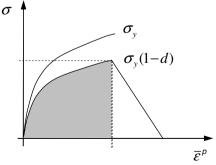
Plastizität

- Quadratische, isotrope Fließflächenformulierung: Möglichkeit, drei Ergebnisse exakt zu treffen bzw. vier näherungsweise (erzwungene Konvexität)
- Dehnratenabhängiges Verhalten:
 Fließkurven zu verschiedenen Dehnraten über tabellierte Eingabe

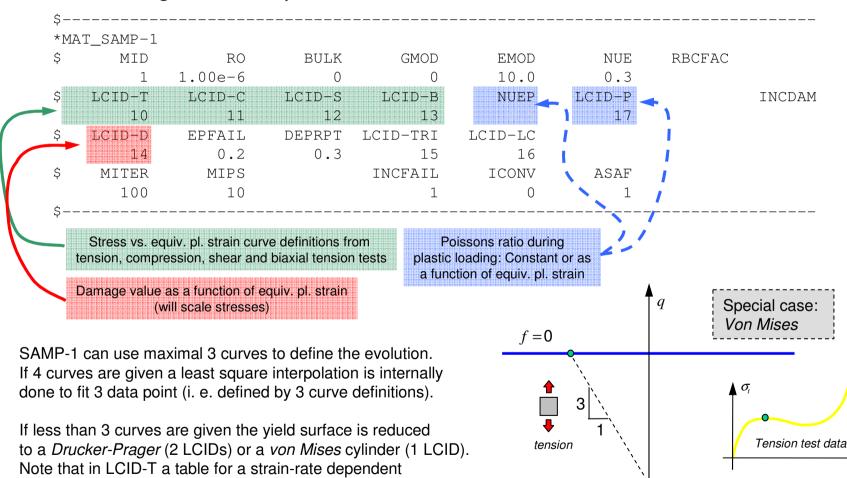

- Schädigung
 - Abbildung von Entlastungspfaden, zykl. Belastungen und mechanischer Entfestigung über Schädigung
 - Schädigungsvariable beschreibt Querschnittsanteil, der keine Last mehr überträgt (Risse, Poren, ...)
 - Elastische Schädigung reduziert materielle Steifigkeit
 - Duktile Schädigung beeinträchtigt materielle Festigkeitseigenschaften (bzw. Steifigkeit und Festigkeit eines Materials)


$$\epsilon_{\mathsf{max}}$$

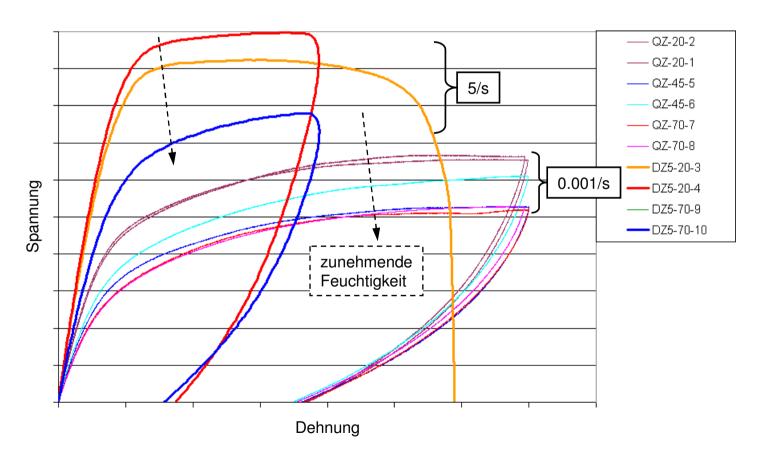

$$\sigma_{eff} = \sigma_{pl} \left(1 - d(\bar{\varepsilon}^{pl}) \right)$$



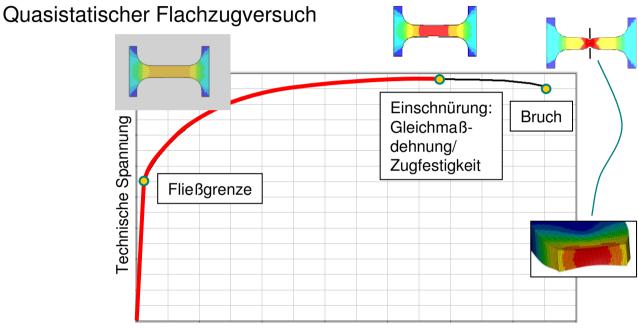
- Versagen
 - Feine Diskretisierung zur Erfassung der Lokalisierung vor dem Versagen
 - Berücksichtigung der Deformationsgeschichte von der Herstellung bis zur Crashbelastung
 - Eingabe von Materialdaten bis zum Versagen (Verfestigungskurve ab Einschnüren über reverse engineering ermitteln)
 - Regularisierung aufgrund netzabhängigen Verhaltens
 - Mögliche Eingabeparameter zur Versagensbeschreibung:
 - Beginn des Versagens d_c
 - Ausblenden der Elemente $\Delta \overline{\mathcal{E}}_{rupt}^{\ p}$
 - Versagen in Abhängigkeit von
 - Dehnrate
 - Elementgröße (Regularisierung)
 - Dreiachsigkeit



Definition einiger Materialparameter

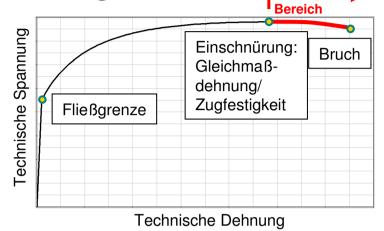


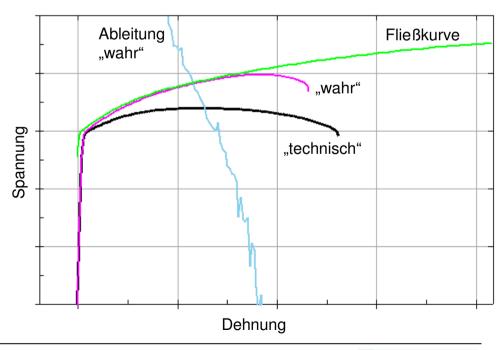
0


yield curve may be specified.

- Die Motivation: Kopfstützenhülse
- Der Werkstoff: PA66
- Das Materialmodell: SAMP
- Das Vorgehen: Materialkartenanpassung

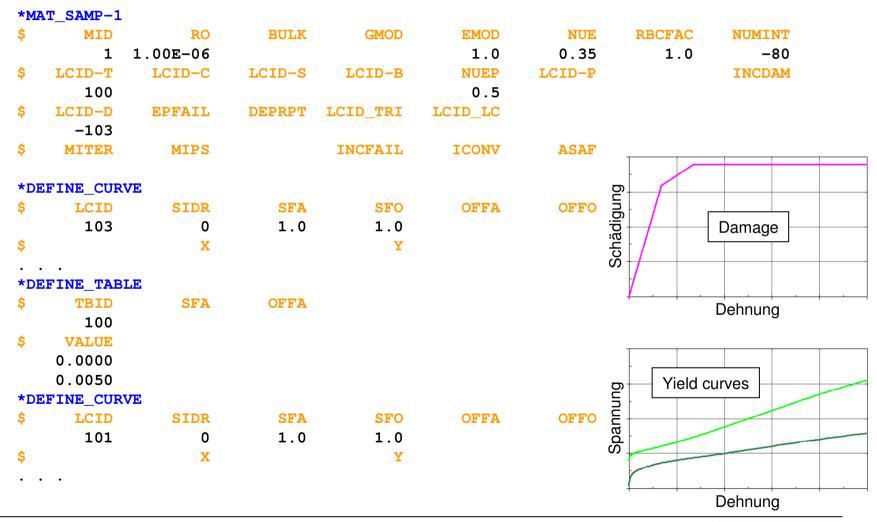
- Dynamische Zugversuche mit Entlastung (Dehnraten: 0.001/s und 5/s)
 - Probekörper: Aussägen von zwei "ebenen", rechteckigen Streifen je Hülse
 - Konditionierung auf 22, 45 und 70% Luftfeuchtigkeit bei 23°C (Klimakammer)


- Sonderfall SAMP: Von Mises-Plastizität (vgl. *MAT_024)
 - Fließkurve: isotrope Verfestigungskurve (eff. Spannung vs. eff. plast. Dehnung)


Technische Dehnung

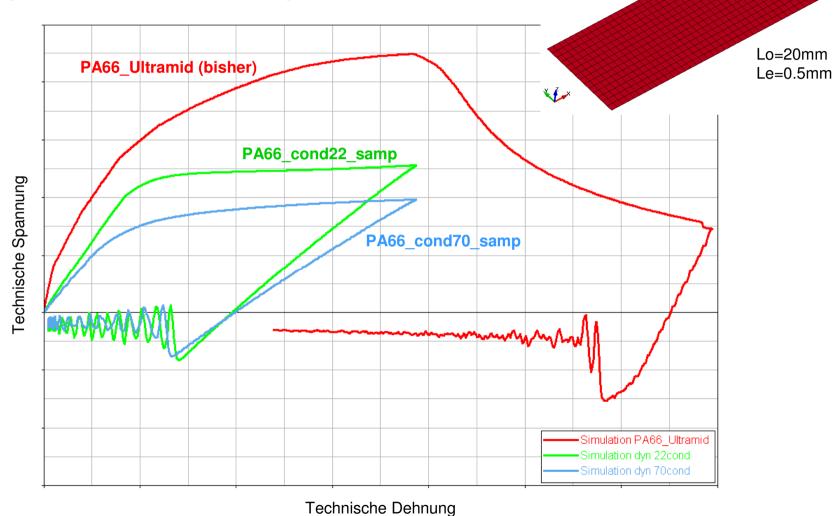
- bis zur Gleichmaßdehnung: direkte Umrechnung der Versuchskurve
 - technische Werte → wahre Werte → Abzug elastischer Anteil
 - $\begin{array}{c|c} \bullet & \text{Spannung:} & \sigma_{wahr} = \sigma_{tech}(1+\mathcal{E}_{tech}) \\ \bullet & \text{Dehnung:} & \varepsilon_{wahr} = \ln(1+\mathcal{E}_{tech}), & \varepsilon_{wahr,plast} = \varepsilon_{wahr} \frac{\sigma_{wahr}}{E} \\ \end{array}$

- ab der Gleichmaßdehnung: iterative Anpassung an Versuchskurve
 - Individuelle oder analytische Ansätze
 z. B. Gosh, Hocket-Sherby, Swift, Voce


- Optimierung mit LS-OPT
 - Extrapolationsstrategie mit zwei oder drei freien Parametern
 - Variation der Fließkurve
 - Ziel: minimaler Fehler zwischen technischer Spannungs-Dehnungskurve aus Versuch und Simulation

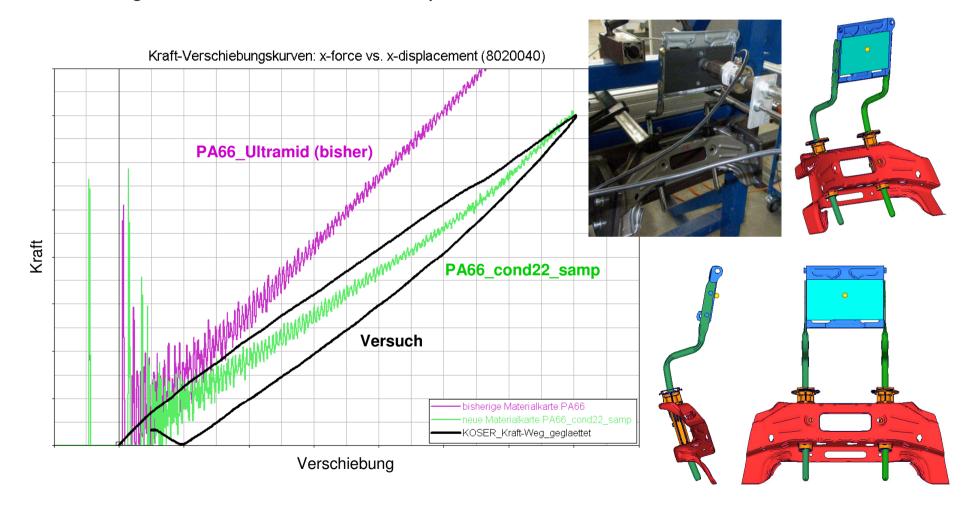
Das Vorgehen: Materialkartenanpassung 22% Luftfeuchtigkeit , EMOD Lo=20mm Le=0.5mm Technische Spannung EMOD **EMOD -**VK QZ 20-1 **-** VK QZ 20-2 Simulation qs 22cond -VK DZ 20-3 **−**VK DZ 20-4 Simulation dyn 22cond Technische Dehnung

22% Luftfeuchtigkeit: Neue Materialkarte PA66_cond22_samp



Das Vorgehen: Materialkartenanpassung 70% Luftfeuchtigkeit Lo=20mm Le=0.5mm * Zx **EMOD** Technische Spannung EMOD **-**VK QZ 70-7 **−**VK QZ 70-8 Simulation qs 70cond **−**VK DZ 70-10 Simulation dyn 70cond Technische Dehnung

- Die Motivation: Kopfstützenhülse
- Der Werkstoff: PA66
- Das Materialmodell: SAMP
- Das Vorgehen: Materialkartenanpassung
- Das Ergebnis


Das Ergebnis

Vergleich "bisher vs. neu": Zugversuch

Das Ergebnis

Vergleich "bisher vs. neu": Komponentenversuch

Das Ergebnis

Zusammenfassung

- PA66 zeigt dehnratenabhängiges Verhalten.
- Die hygroskopischen Eigenschaften des PA66 sind nicht zu vernachlässigen. Eine Lagerung bei höherer Luftfeuchtigkeit führt zu niedrigeren Festigkeiten.
- Die Schädigungsdefinition des Materialmodell SAMP (LCID-D) ist gut geeignet, um die Entlastungspfade der dynamischen Zugversuche des PA66 abzubilden.
- Deutliche Verbesserung bei der Simulation des Komponentenversuch mit der neu erstellten Materialkarte.

Dankeschön

Diese Arbeit ist in Zusammenarbeit mit der Daimler AG entstanden.

Vielen Dank für Ihre Aufmerksamkeit!