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Summary:

For the design of engineering structures and the assessment of their reliability it is of main interest to
appraise the importance of input quantities in view of result quantities. Sensitivity analysis provides a
versatile tool to assess those importance. In the past, this was done by determining the gradients of the
function of interest and deduce sensitivity statements by means of partial derivatives in a local manner.
For most engineering applications those procedures are inappropriate, since it is limited to linear func-
tions and ignores the spreading of the respective input quantities. Thus, enhanced sensitivity measures
are elaborated, which assess the variances of functions in a global manner. Nevertheless, to further im-
prove the informative value of sensitivity statements global partial derivative based sensitivity measures
are introduced. However, due to the computational expense of sophisticated sensitivity analysis, effi-
cient analysis methods are in steady advance. A main focus is thereby on the coupling of metamodeling
techniques and sensitivity analysis.

Generally, sensitivity measures condense available information of global input spaces to singleton val-
ues. In consequence, the importance of local parts of the input spaces are neglected and the charac-
teristic of the functional relationship between input and result parameters remains hidden. While this
fact can be neglected in high dimensional problems, it is of main interest in low dimensional problems.
This becomes obvious, considering the various software tools providing metamodel viewer. Thereby,
metamodel viewer suffer the dimensionality problem; while two parameters can be visualized, the re-
maining parameters are fixed to discrete parameter values. Thus, modifying those parameters will alter
the visualized response surface and disturb deduced information. Especially for challenging problems
the evaluation of metamodel viewer results may become cumbersome. Nevertheless, for good-natured
problems with few sensitive parameters those metamodel viewers are useful to derive an idea about the
behavior of the function of interest.

Alternatively, in this paper the approach of sectional sensitivity measures is introduced, which does not
feature the dimensionality problem. Thereby, the global sensitivity analysis is extended to provide sensi-
tivity information in specific parts of the input space. Merging all those information together, statements
about functional dependencies are obtained. Thereby, sectional sensitivity measures can be distin-
guished in argument based sectional sensitivity measures and sectional sensitivity measures based on
the value of function. While the former is proper to deduce statements about the functional relationship
between individual input and result parameters, which equals the idea of metamodel viewer, the latter is
deployable for reasoning statements about influences of input parameters in specific regions of the result
space. However, the generated sensitivity statements are not only useful for data mining purposes, they
can be even utilized to advance optimization and reliability tasks.

While sophisticated sensitivity approaches provide worthwhile results, their computational expense hin-
ders sometimes the applicability for industry-relevant problems. Thus, sensitivity analysis may be cou-
pled with metamodels. Here, artificial neural networks are applied. Neural networks are capable to
reason unknown dependencies between variables on the basis of a set of initial information. Thereby,
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the information content is stored within the neural network. Utilizing the respective properties, state-
ments about the sensitivity may be derived. Thereby, the sensitivity is assessed by means of measures
capitalizing diverse properties of the artificial neural network. Those are data handling, derivability and
efficient numerical evaluation. In result, multi-faceted sensitivity measures may be defined or evaluated
like weighting-based, derivative-based and even variance-based measures.

The appropriateness of the novel approaches is demonstrated by means of analytical functions and their
applicability is shown by means of an industry-relevant example.
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1 Introduction

The simulation based design process of engineering structures is a complex and ambitious task, espe-
cially, when multiple input parameters have to be handled. Versatile tools are on hand to optimize the
structure or assess the reliability by means of black-box programs. But most often, engineers long for
an deepened insight into the specific problem to understand, what is going on. Therefore, so called data
mining tools are available, which enable to detect structures in some predetermined point sets. These
point sets can be generated from an initial random sampling or be the results of optimization or reliability
runs. However, the aim is to reason dependencies between variables, mostly between input and result
variables. Thereby, one big issue is to determine the influence of individual input variables in view of
specific result variables. This is done by determining the sensitivity of input parameters.

Even though, first approaches of sensitivity analysis are rather old, the improvement of sensitivity mea-
sures are still of main interest in research. First sensitivity analysis were applied in experimental investi-
gation. Thereby, individual input parameters are varied in specified ranges, one at a time, to appraise the
influence on the results. This sensitivity analysis is adopted in numerical investigations and still in broad
application [10]. The aim is to determine the gradient of each input parameter in a point of interest. For
analytical functions this can be done in a closed form. Since those approaches focus on the influence
of input parameters in specific points they are denoted as local sensitivity measures. They are proper
for linear problems with non-interacted input parameters. Thus, their application for industry-relevant
problems is doubtful [10].

In result, global sensitivity measures (GSM) are introduced which enable to capture even non-linear
interacted characteristics in the functional relationship of input and result parameters. Global in this
sense means, that opposite to local sensitivity measures the sensitivity is not assessed for specific
points but rather for the input spaces. Thereby, the spreading of input parameters has to be incorporated
appropriately in the sensitivity approach. This can be exemplified easily with f(x, y) = x2 + y. If x
varies in the range x ∈ [−0.1, 0.1] the influence is negligible, while specifying x in a range of x ∈
[−5, 5], the importance of x becomes superordinate. For the determination of global sensitivity measures
several approaches are available. In general, two strategies can be distinguished. The first strategy
assesses the structural response itself by means of evaluating the variance. Therefore, the variance
decomposition is introduced. Well known approaches are, inter alia, ANOVA (analysis of variances),
fast fourier transformation and Sobol indices. The latter is said to provide the best results for complex
computational models [9]. The second strategy assesses the first partial derivative of the functional
relationship in the integral mean and can be considered as an extension of local sensitivity measures.
This approach is quite new and still under intensive research. First ideas were introduced by [8] and
further improvements were presented by [1, 4, 13]

In result of a global sensitivity analysis a singleton sensitivity measure for each input dimension is ob-
tained. All information about the nonlinear, complex functional relation of input and result parameters
is condensed to a single value. This is reasonable for a high number of input parameters (e.g. more
than 100). But, for low dimensional problems (e.g. up to 30) a more detailed insight is preferable.
Therefore, the approach of sectional sensitivity measures is presented in this contribution. The idea is
to partition the sensitivity measure per input dimension additionally and determine the global sensitivity
section-wise. In result, the influence of input parameters is assessed locally. Thus, statements about the
functional relationship of input and result parameters can be concluded. In consequence, the approach
of sectional global sensitivity measures (SGSM) provides a reasonable alternative to visualization tools,
which create scatterplots or metamodel views of extracted input dimensions in high dimensional prob-
lems. Thereby, the perturbation on account of other input dimensions is removed with SGSM.

Since the determination of SGSM may become computationally expensive, when a high accuracy is
required, a combination with metamodels, here neural networks are applied, is reasonable. Thereby,
the derivability of neural networks can be used to determine first partial derivatives of the function under
consideration in a numerical cheap manner.

In this paper a short introduction to GSM, both variance based and derivative based, is given in Sec-
tion 2. Then, the approach of sectional sensitivity is introduced in Section 3. For the purpose of numer-
ical efficiency, sensitivity is analyzed on the basis of neural networks. An short introduction is provided
in Section 4. Finally, in Section 5 the features of the presented approaches are demonstrated by means
of analytical functions and the applicability is shown by means of an industry-relevant example.
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2 Global sensitivity measures

The aim of sensitivity analysis is to assess the influence of individual input quantities xi ∈ R in view of
a result quantity z ∈ R in comparison to all other input parameters x∼i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈
Rn−1.

f : Rn → R : x = (xi, x∼i) 7→ f(x) =: z (1)

A sensitivity measure Si is defined for i ∈ {1, . . . , n} as

Si =
Ŝi

n∑
j=1

Ŝj

. (2)

In most engineering application the sensitivity measure is evaluated as given in Equation 2. Since it
characterizes just the overall influence of an input quantity, it is denoted as total sensitivity measure in
literature [12, 14]. A more detailed definition of sensitivity distinguishes further components Si1,...,is

, so
called partial sensitivity measures, of Si

Si1,...,is =
Ŝi1,...,is

n∑
s=1

∑
1≤i1<···<is≤n

Ŝi1,...,is

. (3)

Thereby,
∑n

i Si +
∑

1≤i≤j≤n Si,j + · · · + S1,2,...,n = 1 holds. On the basis of Si1,...,is
total sensitivity

measures can be deduced

Stot
i =

∑
ik=i

1≤ik≤n

S...,ik,... = 1−
∑
ik 6=i

1≤ik≤n

S...,ik,... (4)

The total sensitivity measures do not add to one, since it is not normalized to the total sum. The
reason is the repeated consideration of partial sensitivity measures in Eq. (4). Applying an additional
normalization, the summation to one holds again. In doing so, the sensitivity measure given in Eq. (2) is
obtained

Si =
Stot

i
n∑

j=1

Stot
j

. (5)

The important task of sensitivity analysis is a proper description of Ŝi. Commonly, Ŝi assesses either
the function f itself or the first partial derivatives ∂f/∂xi = ∂if , see [1, 4, 13]. For the assessment of the
respective functions the moments can be evaluated. The focus is on the expected value

G =
1
|Hn|

∫
Hn

f (x) dx with Hn ⊆ Rn (6)

and the variance

D =
1
|Hn|

∫
Hn

(f(x)−G)2 dx =
1
|Hn|

∫
Hn

f(x)2dx−G2 . (7)

Evaluating the function f itself, the application of the expected value is unreasonable, since no useful
sensitivity statements can be derived. This becomes obvious, considering the conditions for ANOVA
decomposition, see Eq. (9) and (10). For the evaluation of f the consideration of the variance or higher
order moments is proper. Thereby, the evaluation of partial variances, based on the ANOVA decom-
position (see Section 2.1), is required to evaluate individual input quantities xi. For the assessment of
the first partial derivative ∂if , the expected value G of ∂if for all i = 1, 2, . . . , n can be determined. To
additionally examine the effect of interactions, the total variance D of ∂if can be evaluated [1].
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2.1 ANOVA decomposition and Sobol indices

Consider a function f , square integrable in Hn, with the Lebesgue integral [13]. This function can be
expressed with the help of the ANOVA decomposition as

f(x) = f0 +
n∑

s=1

∑
1≤i1<···<is≤n

fi1,...,is
(xi1 , . . . , xis

) (8)

with s = 1, . . . , n and

f0 =
1
|Hn|

∫
Hn

f(x)dx = G . (9)

Thereby, for p = 1, 2, . . . , s holds∫
Aip

fi1,...,is
(xi1 , . . . , xis

)dxip
= 0 . (10)

For the components fi1,...,is
(xi1 , . . . , xis

) in Eq. (8) the partial variance Di1,...,is
is

Di1,...,is
=
∫

Ai1 ,...,Ais

fi1,...,is
(xi1 , . . . , xis

)dxi1 , . . . ,dxis
. (11)

The total variance can be detemined with the help of partial variances

D =
n∑

s=1

∑
1≤i1<···<is≤n

Di1,...,is
. (12)

On the basis of the ANOVA decomposition the sensitivity measure Ŝi1,...,is
in Eq. (3) can be defined with

Ŝi1,...,is
= Di1,...,is

and
n∑

s=1

∑
1≤i1<···<is≤n

Ŝi1,...,is = D . (13)

The resulting Si1,...,is
are denoted as Sobol indices. For continuous functions f condition Ŝi1,...,is

= 0
implies, that the component fi1,...,is

has no importance for f . For more details about ANOVA decompo-
sition and further explanations about the Sobol indices see [12, 14, 9]

2.2 Partial derivative based sensitivity

The sensitivity analysis on the basis of partial derivatives requires the determination of the expected
values of a function g.

ŝi : {[a, b] , a, b ∈ R, a ≤ b}n → R : Hn 7→ 1
|Hn|

∫
Hn

g (x) dx =: Ŝi (14)

Ŝi =
1
|Hn|

∫
Hn

g (x) dx (15)

Thereby, different ansatz functions are available in literature. In [8], where first ideas about derivative
based sensitivity measures are presented, the function g is defined as g = ∂f/∂xi. To countervail the
problem of negative signs, in [1, 4] an improved measure with g = |∂f/∂xi| was introduced. An alter-
native approach, introduced by [13], defines g with g = (∂f/∂xi)

2. This approach enables to constitute
a connection to the variance based sensitivity measure, see Section 2.1. This measure was likewise
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applied in [4] in a sum of a squared expected value and the variance of ∂if

G2 +D =
1
|Hn|

∫
Hn

(∂if(x))2 dx , (16)

which is identical to the approach introdcued in [13].

In this contribution g is introduced as |∂f/∂xi|. For the numerical treatment a sequence of quasi random
points x1, . . . , xj , . . . , xnsim

in Hn has to be generated. If g is Riemann integrable, the term
∫

Hn g(x)dx
can be evaluated, see [13], with

1
|Hn|

∫
Hn

g(x)dx = lim
nsim→∞

1
nsim

nsim∑
j=1

g(xj) . (17)

2.3 Remarks on global sensitivity measures

The interested reader might be confused about multiple sensitivity measures; still introduced are vari-
ance based sensitivity measures in Section 2.1, derivative based measures in Section 2.2 and anticit-
pating Section 4 neural network weighting based sensitivity measures. They arise due to the fact, that
a mathematical definition of sensitivity is missing so far. Sensitivity can be just assessed by means
of measures. Thereby, those measures appraise specific, but different, characteristic of the functional
relationship f . In consequence, the announced sensitivity measures might provide diverse sensitivity
evaluations. Those diverse sensitivity measures should be not rated as a discrepancy but rather as a
completion.

However, the advantages of multiple sensitivity measures can be demonstrated by means of an example.
Thereby, the function of interest f , see Fig. 1, is

f(x, y) = sin(x) + sin(4 · y) . (18)

Figure 1: Function f (see Eq. (18)) Figure 2: Individual plots of sin(x) and
sin(4 · y)

The sensitivity S1, S2 is determined analytically. While the variance based sensitivity measures assess
the importance of both input quantities x1, x2 as equal, SSobol

1 = SSobol
2 = 0.5, the derivative based

sensitivity measures highlight the importance of x2 with SDer
2 = 0.80 in comparison to x1 with SDer

2 =
0.20. Comparing the results with Fig. 2 it becomes obvious, that the identification of differences between
x1 and x2 is reasonable.

© 2010 Copyright by DYNAmore GmbH

Robustheit 9. LS-DYNA Forum, Bamberg 2010

I - I - 26



3 Sectional global sensitivity measure

Sensitivity measures introduced in literature have in common, that they provide for an individual input
quantity xi a deterministic value Si. Thereby, the spreading of the respective quantity is considered in
the integral mean. The aim of sectional sensitivity measures is to highlight even local effects. Since
it might be of interest to capture local effects in input parameters and result parameters it has to be
distinguished between argument based sectional sensitivity measures (AGSM) and sectional sensitivity
measures based on the value of function (FGSM).

3.1 Argument based sectional sensitivity measures

The basic idea of AGSM is to subdivide the input space of interest Ai = Qi(Hn), with

Qi : {[a, b] , a, b ∈ R, a ≤ b}n → {[a, b] , a, b ∈ R, a ≤ b}
Hn = (A1, . . . , An) 7→ Ai

in a finite number NI of subintervals (Ai)
I
k. For each Ai ⊆ R,

(
(Ai)

I
k

)
k∈{1,...,NI}

represent a family of

intervals (Ai)
I
k ⊆ R with

(Ai)
I
k ∩ (Ai)

I
j = ∅ , k 6= j and

⋃
k∈{1,...,NI}

(Ai)
I
k = Ai . (19)

If this segmentation is done simultaneously for all i = 1, . . . , n, note that n indicates the dimensionality
of the problem, a set of subhypercuboids (Hn)I∗

w is constituted with w ∈ {1, . . . , (NI)
n}. Thereby, for

NI ≥ 2 holds

∀ w ∈ {1, . . . , (NI)
n} : (Hn)I∗

w ⊂ H
n (20)

For each of these subhypercuboids the sensitivity in accordance to Section 2 can be determined. But,
the handling of the produced data becomes a problem. Subdividing each input dimension into NI

intervals, (NI)
n combination of sensitivity values (S1, . . . , Sn) will be obtained. If the problem has a high

dimensionality (n > 3) the evaluation of results becomes impracticable.

To countervail this problem the segmentation is just performed for an individual input quantity xi, while
all remaining input quantities x∼i are considered globally. Thus, for a section k of an input quantity xi

the sensitivity term Ŝa
i,[k], in accordance to Section 2, can be specified. Since Ŝ∼i of the remaining input

quantities x∼i stay constant for all k, the sensitivity terms Ŝa
i,[k] can be compared among each other with

Sa∗
i,[k] =

Ŝa
i,[k] ·NI

NI∑
l=1

Ŝa
i,[l]

=
Ŝa

i,[k] ·NI

Ŝi

(21)

Thereby, Sa∗
i,[k] enables just a qualitative sensitivity statement. Due to

NI∑
l=1

Ŝa
i,[l] = Ŝi the qualitative results

Sa∗
i,[k] can be scaled with the global sensitivity Si

Sa
i,[k] = Sa∗

i,[k] · Si =
Ŝa

i,[k] ·NI

Ŝi

· Si =
Ŝa

i,[k] ·NI

n∑
j=1

Ŝj

=
Ŝa

i,[k] ·NI

n∑
j=1

NI∑
l=1

Ŝa
j,[l]

(22)

to deduce a quantitative statement. While Si shows values of the interval [0, 1], because it is normalized,
possible values of Sa∗

i,[k] are in the interval [0, NI ]. Hence, Sa
i,[k] provide by definition values in the interval

[0, NI ]. Theoretically, sensitivity measures of greater than one are possible; in application this case is
improbable.
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The subhypercuboids (Hn)I
v with v ∈ {1, . . . , NI}, obtained by means of the discussed segmentation,

have the property, that for the input quantity of interest xi (NI ≥ 2)

∀ v ∈ {1, . . . , NI} : Qi((Hn)I
v) = (Ai)

I
v ⊂ Qi(Hn) = Ai (23)

and for the remaining input quantities x∼i

∀ j ∈ {1, . . . , i− 1, i+ 1, . . . , n} ∧ v ∈ {1, . . . , NI} : Qj((Hn)I
v) = Qj(Hn) (24)

holds.

In this contribution the sectional sensitivity measures are evaluated with partial derivative based sen-
sitivity measures. Thus, for the numerical realization the same point set, as introduced in Section 2.2,
x1, . . . , xj , . . . , xnsim is utilized. This point set is subdivided in accordance to the segmentation k, while

nsim =
kmax∑
k=1

nsim,k holds. The sensitivity measure is defined, see also Eq. (17), with

Ŝa
i,[k] =

1∣∣∣(Hn)I
k

∣∣∣
∫

(Hn)I
k

g(x)dx =
1

nsim,k

nsim,k∑
j=1

g(xj) (25)

3.2 Sectional sensitivity measures based on the value of function

The main idea of FGSM is similar to the AGSM approach. Contrarily, not the input space is segmented,
but rather the result space B. Thereby, the result space is defined with

B = {b;∀x ∈ Hn : b = f(x)} . (26)

Generally, B is just defined in a closed interval if f is a continuous function. For B ⊆ R,
(
BI

m

)
m∈{1,...,NI}

is a family of intervals BI
m ⊆ R with

BI
m ∩BI

j = ∅ (m 6= j) and
⋃

m∈{1,...,NI}

BI
m = B . (27)

Due to the segmentation, for each result quantity of the subdivision zm ∈ BI
m the respective input

quantity xm ∈ (Hn)I
m is assigned.

(Hn)I
m =

{
xm;∀zm ∈ BI

m : x = f−1(zm)
}

(28)

The obtained input quantities xm can be described with hypercuboids just in infrequent situations. At
least for linear functions f the input quantities xm can be described with convex hulls, for nonlinear
functions f this will not work anymore.

The sensitivity measures Sf
1,[m], . . . , S

f
n,[m] for each section of the result quantities BI

m can be deter-
mined, as described in Section 2, with

Sf
i,[m] =

Ŝf
i,[m]

n∑
j=1

Ŝf
j,[m]

(29)

If f is a non-monotonic function, the input space (Hn)I
m can not be described with a continuous hull

anymore. In consequence, to each subregion BI
m in the result space multiple non-connected subregions

in the input space (A1,1, . . . , An,1) , . . . , (A1,c, . . . , An,c) are assigned. An appropriate detection of those
non-connected subregions demands the inverse solution approach [5, 6]. For a respective section BI

m ⊂
B not just a combination of sensitivity measures is obtained but rather a set of combinations of sensitivity
measures.

(
Sf,1

1,[m], . . . , S
f,1
n,[m]

)
, . . . ,

(
Sf,c

1,[m], . . . , S
f,c
n,[m]

)
.

It has to be noted, that it is not reasonable to compare adjacent sensitivity values Sf
i,[m] and Sf

i,[p],
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determined in adjacent sections, BI
k , B

I
p ⊂ B, because they are scaled with

n∑
j=1

Ŝf
j,[m] and

n∑
j=1

Ŝf
j,[p]

respectively. Thereby, for each non-linear function f

n∑
j=1

Ŝf
j,[m] 6=

n∑
j=1

Ŝf
j,[p] . (30)

Considering exemplarily the function q(x1, x2) = x1 + x2
2, even though the sensitivity of x1 is constant in

A1, the FGSM are dissimilar in each section (A1)
I
k

∀ m ∈ {1, . . . , NI} ∧ j ∈ {1, . . . , NI} ∧m 6= j : Sf
1,[m] 6= Sf

1,[j] . (31)

4 Global sensitivity measures and neural networks

As an alternative to the introduced approaches in Section 2 the sensitivity can be assessed by means
of a trained neural network. Thereby, several features of the neural network can be utilized in an ad-
vantageously manner. Perceiving an artificial neural network (ANN) not only as a surrogate model to
approximate a functional relationship f but rather as a versatile tool to reason the behavior of f , several
characteristics of ANN can be capitalized for sensitivity analysis. Principally, these are the data storage
(to memorize the characteristic of f in the weighting matrix of the ANN), derivability (to determine partial
derivatives analytically) and efficient numerical evaluation. The both latter ones can be used to obtain
variance based and derivative based sensitivity measures. But the utilization of the weighting matrix re-
quires to establish a new class of sensitivity measures. These are denoted as weighting based sensitivity
measures. First attempts to formulate weighting based sensitivity measures are done in literature [7].
Those ideas are further extended in this contribution.

For the formulation of weighting based sensitivity measures some basic concepts of ANNs are presented
first, see also Fig. 3 and 4. ANNs save their information within the synaptic weights wk

jk,jk+1, which
connect the neurons jk between the k-th and k + 1-th network layer. Therefore, wk

jk,jk+1 provide all
essential information about the trained input data – as expected the characteristic of f .

Figure 3: Scheme of artificial neural network Figure 4: Scheme of p-th neuron in layer k

The sensitivity characteristic Ŝi can be formulated for a finite number s of neuron layers k ∈ {1, . . . , s},
jk ∈ {1, . . . , Nk} neurons per layer k respectively, with

Ŝi =
Ns−1∑

js−1=1

· · ·
N2∑

j2=1

∣∣∣w1
i,j2 · w

2
j2,j3 · · · · · w

s−1
js−1,1

∣∣∣ . (32)

Generally, the treatment of positive and negative weights is handled controversial in the literature. In
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this approach, the absolute value of weights is applied, due to the fact, that the total influence should be
evaluated.

As a matter of fact, the first layer of weights have the greatest influence on the output of the ANN. In
consequence, concentrating on those weights offers a first good shot about the sensitivity

Ŝi =
N2∑
j=1

|wij | . (33)

The accuracy suffers in comparison to the weight product, but the manageability is increased, especially
in the presence of ANN with many hidden layers.

Formulating sensitivity measures with the pure introduction of weights approximates the mode of opera-
tion of ANN just in a rough manner. In detail, the influence of the weights behind the neurons k ≥ 2, which
accommodate activation functions, are incorporated in a crude way, due to the fact, that the weights are
always multiplied with activation yk

p = ϕ
(
ok−1

jk−1
, wk−1

jk−1,p, b
k
p

)
of the previous neuron. To account for this

fact, activation-weighting based sensitivity measures are introduced.

Ŝi =
Ns−1∑

js−1=1

· · ·
N2∑

j2=1

∣∣w1
i,j2

∣∣ · ∣∣y2
j2

∣∣ · ∣∣w2
j2,j3

∣∣ · ∣∣y3
j3

∣∣ · · · · · ∣∣∣ys−1
js−1

∣∣∣ · ∣∣∣ws−1
js−1,1

∣∣∣ (34)

To shorten matters, in this contribution no remarks about the efficient evaluation and derivability of neural
networks are provided. The interested reader is referred to [11, 2].

5 Examples

5.1 Benchmark Polynom

In this first example the idea of AGSM and FGSM should be highlighted. Therefore, a straightforward
function is considered

f(x1, x2, x3) = 0 · x1 + 2 · x2 − x2
3 , (35)

which can be evaluated and assessed by means of visualization. Thus, the results of sensitivity analysis
become comparable. In Eq. (35) the term of x1 has no influence on f . An important feature of sensitivity
measures should be in general, that insensitive parameters are assessed as such. However, the function
f can be visualized in a x2-x3-plot.

Figure 5: Function f∗(x2, x3) = 2 · x2 − x2
3

sensitivity measure µ σ
x2 x3 x2 x3

weighting based 12 88 1 1
simplified
weighting based 18 82 1 2
activation-
weighting based 12 88 1 1
derivative based 27 73 0 0
variance based 38 62 0 0

Figure 6: Global sensitivity measures for f∗

First of all, global sensitivity measures on the basis of artificial neural networks are determined; the three
introduced weighting based sensitivity measures, a derivative and variance based sensitive measure,
see Fig. 6. In order to make sure, that the training of a neural network has no significant influence on
the sensitivity results, the analysis is repeated several times. Hence, the empirical mean µ and standard
deviation σ are stated. The qualitative ranking of the input quantities is the same. But the quantitative
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values vary between the different approaches. Thereby, the weighting based measures show similar
results and highlight especially x3. In opposite, the variance based measures emphasizes x3 as less
important. The derivative based sensitivity measure shows intermediate results.

In order to provide a better insight into this problem, sectional sensitivity measures on the basis of partial
derivatives are determined. The respective results are depicted in Fig. 7 and 8. Thereby, the AGSM is
potential to show the main character of the function f , separated for each dimension respectively. This
feature is comparable to a metamodel viewer but advantageously the influence of other input dimensions
is incorporated inherently. Additionally, the FGSM gives further information about the influence of input
parameters for specific result parameter ranges. In Fig. 8 it is obvious, that the influence of x2, x3 is
similar for large result values, while for small result values the influence of x3 is paramount.

Figure 7: AGSM of polynomial function Figure 8: FGSM of polynomial function

5.2 Benchmark Ishigami

A more ambitious function is investigated in order to show the potential of the introduced approach.
Therefore, the Ishigami function, see Eq. (36), is applied, since it is often used to validate sensitivity
measures [14]

f(x1, x2, x3) = sin(x1) + 7 · sin2(x2) + 0.1 · x4
3 · sin(x1) . (36)

This 3D Problem is visualized by means of the respective cross-plots in Fig. 9. Note, that the scales for
the values of function vary between each plot.

Figure 9: Cross-plots of Ishigami function

As before, the global sensitivity measures are determined with an empirical mean and standard devi-
ation, see Fig. 10. Thereby, the concordance between weighting based and variance based sensitivity
measures is high, while the derivative based measure even show another qualitative ranking. Derivative
based sensitivity measures highlight the importance of x2 and rank x1, x3 equally, while the other inves-
tigated GSM emphasize the importance of x1 prior to x2, x3. An evaluation of those results is arguable;
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a basis may provide Fig. 9. However, the higher standard deviations of the weighting based sensitivity
measures show, that they are more sensitive to the training of the artificial neural network.

sensitivity measure µ σ
x1 x2 x3 x1 x2 x3

weighting based 48 26 26 6 4 5
simplified weighting based 42 34 24 6 4 5
activation-weighting based 45 29 26 11 9 7
derivative based 22 55 23 0 1 1
variance based 45 36 19 1 1 0

Figure 10: Sensitivity measures of Ishigami function

Furthermore, the AGSM and FGSM on the basis of derivative based sensitivity measures are determined
for the Ishigami function, see Fig. 11 and 12. The results of the AGSM seems to be unusual at a first
glance in comparison to the cross-plots in Fig. 9. But recalling, that the derivative based sensitivity
measures assess regions with gradients of zero as non-sensitive, the appropriateness of the results
becomes obvious. The results of the FGSM are intuitive and simple to interpret. If we are interested in
modifying especially large or small values of the result parameters, x3 should be altered. Comparing
those predication with the results in Fig. 10 the significance of sectional global sensitivity measures
is apparent. Note, that the results in Fig. 12 are simplified, since they ignore the uniqueness of the
Ishigami function. Appropriate approaches to handle unique functions are on hand [5, 6], but detailed
explanations are behind the scope of this approach.

Figure 11: AGSM of Ishigami function Figure 12: FGSM of Ishigami function

5.3 Radiofrequency ablation

To point out the applicability of the presented approach, the introduced methods are demonstrated
for an industry-relevant example of radiofrequency ablation (RFA) for hepatic tumors, see Fig. 13. In
RFA a needle shaped applicator is inserted into the tumor and by means of electric current heat is
produced, which causes cell death. The introduced example is elucidated in detail in [3] to determine an
optimal applicator placement under consideration of uncertain input parameters. Here, a preprocessing
evaluation for this example is investigated to assess the influence of the eight input parameters in view
of result parameters.

The input parameters in sequence are the electrical conductivity of the hepatic parenchyma σpar, the
blood vessels σves and the tumor σtum, the position x, y, z and orientation ϕ,ψ of the applicator. The
result of interest is the minimal temperature tmin within the tumor.

In Fig. 14 the values of GSM are shown. The results of derivative based and variance based GSM
exhibit similar results for the qualitative assessment. The results of weighting based GSM are slightly
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different, because a higher priority is assigned to ϕ and ψ. On account of the obtained results it can be
stated, that σves and σtum are negligible for further simulations and that the positions x, y, z are most
influential, since it seems to be reasonable to position the applicator in the proximity of the center of the
tumor.

Figure 13: Visualization of RFA

input weighting derivative variance
parameters based sensitivity measure
σpar 7 17 19
σves 0 0 0
σtum 2 3 2
x 19 18 16
y 14 16 11
z 24 29 47
ϕ 19 9 4
ψ 16 8 3

Figure 14: Sensitivity measures of RFA

The AGSM and FGSM, see Fig. 15 and 16, provide a deepened insight into the problem. Thereby, AGSM
highlight again the importance of the applicator positions x, y, z. Additionally, it can be reasoned that
x, y, z are most sensitive in the margins of the tumor, while the remaining input parameters show similar
importance when the applicator is positioned in the proximity of the center of the tumor. Supplementary,
the FGSM reveal, that for small temperatures tmin the coordinate z is most influential, while for large
temperatures tmin the electrical conductivity σpar is most sensitive.

Figure 15: AGSM of RFA
(selected input parameters)

Figure 16: FGSM of RFA
(selected input parameters)
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6 Conclusions

In the presented approach, a new way of investigating the functional dependency between input and re-
sult parameters is introduced. Therefore, sectional sensitivity measures are presented, both argument
based sensitivity measures and sensitivity measures based on the values of function. The introduced
approach may be applied in the preprocessing stage of engineering design or even utilized to steer opti-
mization procedures and reliability analysis. The idea of argument based sensitivity measures is similar
to the idea of metamodel viewer, but countervails the dimensionality problem. Hence, the influence of re-
spective input parameters in view of result parameters is evaluated without any disturbance due to other
input parameters. The approach of sensitivity measures based on the values of function focuses on
the influence of input parameters on specific result parameter ranges. This is worthwhile since in many
applications it is of main interest to avoid especially small or large values, e.g. in reliability assessment.
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