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Summary:

Global sensitivity analysis provides information about the respective significance/contribution of struc-
tural input random parameters (or combinations thereof) onto considered responses. The identification
of non-relevant and relevant structural parameters for model reduction purposes is one of the major
tasks. Global sensitivity analysis may also improve the understanding of the model behavior and may
clarify interactions among input parameters. This paper focuses in particular on global sensitivity analy-
sis approaches in view of nonlinearity of the underlying computational model (e. g. finite element model).
Three main approaches are presented, compared and demonstrated by means of analytical and practi-
cal examples.
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1 Introduction

Structural optimization and uncertainty analysis of moderate to complex computational models is costly
and often requires additionally effort due to the high number of design variables that might be considered
in the design process. Responses can depend on all variables, but often the significance onto the
variance of the structural responses differs greatly. In many cases a structural response is dominated by
only a few variables. Objectives of a global sensitivity analysis might be [3]:

— Identification of significant and insignificant variables. Possible reduction of the dimensions (num-
ber of design variables) of the optimization problem.

— Improvement in understanding of the model behavior (highlight interactions among variables, find
combinations of variables that result in high, or low, values for the model output).

In this sense, a suitable definition of global sensitivity can be found in [6]:

“Sensitivity analysis (SA) is the study of how the variation in the output of a model (numer-
ical or otherwise) can be apportioned, qualitatively or quantitatively, to different sources of
variation.”

Most of the global sensitivity analysis approaches can be classified into two groups [11]:

— Regression-based methods: The standardized regression coefficients (SRC) are based on a linear
regression of the output on the input vector. In a linear regression, the value of the standardized
regression coefficient is exactly the same as the correlation coefficient. The Pearson correlation
coefficients measure the effect of each design variable by the correlation it has with the structural
response. In the case of monotone but nonlinear structural behavior rank based measures may be
used, leading to the so-called SRRC (standardized rank regression coefficients). Based on these
measures only limited conclusion can be drawn in the case of general nonlinear non-monotonic
models. This conclusion is also appropriate for quadratic correlation approaches.

— Variance-based methods: The observed variance of the structural responses is partitioned into
components induced by the respective structural variables. This decomposition of the variance is
usually called ANOVA techniques for “ANalysis Of VAriance”. The Fourier amplitude sensitivity
test (FAST) indices [1, 7] and the Sobol’ indices [8] are intended to represent the sensitivities for
general (nonlinear) models.

The Sobol’s variance-based approach, the Sobol’ indices, has received much attention in literature in
the last years since they provide accurate sensitivity information for most models [11]. The application
of Sobol's approach, correlation analysis and variance-based ANOVA will lead to comparable results
for the linear models. The obtained ranking of variables in terms of sensitivity will be almost equal.
However, in the general nonlinear case it is assumed that Sobol’s approach results in more satisfactory
sensitivity measures. A brief overview about correlation analysis, ANOVA, and the decomposition of
variance after Sobol is given in the following section. The (regression-based) correlation coefficient,
the (variance-based) linear ANOVA, and Sobol’ indices are compared at first by means of analytical
examples followed by a simple crash analysis.

2 Global sensitivity analysis approaches

2.1 Correlation analysis

Correlation, (often measured as a correlation coefficient), indicates the strength and direction of a linear
relationship between two random variables. A number of different coefficients are used for different
situations. The best known is the Pearson product-moment correlation coefficient, which is obtained by
dividing the covariance of the two variables by the product of their standard deviations. The correlation
coefficient px y between two random variables X and Y is defined as the Pearson correlation coefficient

E(XY)—E(X)E(Y)
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where E(-) denotes the expected value. For a result of a numerical experiment e.g. obtained through
a Monte Carlo Simulation, the Pearson product-moment correlation coefficient can be used to estimate
the correlation between X and Y. The Pearson correlation coefficient is then the best estimate of the
correlation of X and Y. The Pearson correlation coefficient is written:

_ Yo (i —x) (i =)
VEL (6922, (i -5

(@)
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where X is the mean (average) of the x; values and y is the mean of the y; values. The values of the
correlation coefficients from Eqgs. (1) and (2) are located in the interval [—1, 1], where values close to 0
indicate a weak (linear) relationship and values close to -1/1 a strong (linear) relationship between the
investigated random variables X and Y.

The correlation is a very popular and powerful measure to summarize linear relationships between vari-
ables but in the case of outliers or (weak) nonlinearity it may lead to wrong conclusions. Therefore a
correlation analysis does not replace the individual examination of the data (e.g. through anthill plots).

The Pearson correlation coefficient is associated with the regression coefficient obtained by linear regres-
sion analysis. Regression analysis also indicates the strength and direction of a relationship between
two random variables X and Y. At this one random variable is defined to be dependent and modeled as
a function of the independent variable, corresponding parameters, and a random error term. In linear
regression for modeling »n data points there is one independent variable x;, two parameters « and b, and
one error term ;.

yi = a+bxitg
The parameters a and b are estimated by using the least squares method.
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The interrelation between linear regression and the Pearson correlation coefficient is given by

N Sy
b = rx,ysf} (5)

X

where s, and s, are the standard deviations of the respective data.

The proportion of variability in the investigated data accounted for by the linear regression is defined by
the coefficient of determination R)Z(?y. The variability of the data is measured through the residuals

i = yi— (CZA +5xi) (6)
The coefficient of determination wa is thus defined by

N 2
Y4

I P = L/
” YV (vi—y)?

In the case of linear regression, Riy is the square of the Pearson correlation coefficient r, .

2.2 ANOVA

A common ANOVA approach is presented in [10] and explained in the following. The approach is based
on response surface methodology, that is, a design surface is fitted to predetermined response values
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using regression analysis. Least squares approximation is used for this purpose. Consider a single
response variable Y dependent upon a number of variables X = (X;,Xz,...,X,). The exact functional
relationship between these quantities is

Y = fX) (8)
The exact functional relationship is now approximated (e.g. polynomial approximation) as
fX) = f1(X) (9)

The approximating function f*(X) is assumed to be a summation of basis functions

L
ffX) = Zai(Pi(X) (10)

where L is the number of basis functions ¢;(-) used to approximate the model. The constants a =
(a1,ay,...,ar)’ have to be determined in order to minimize the sum of square error

P P L
Y A& - X = ) {[f(Xp)Zaiqz-(Xp)]z} (11)
p=1 p=1 i=1
P is the number of experimental points and f(X,,) is the exact functional response at the experimental
points X .

The contribution of a single regressor variable to the model can be investigated by means of the partial
F-test where F is calculated to be

2
i

IS

~
I
o)

(12)
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The &2 term represents the sum of squared residuals and C;; is the diagonal element of (X" X)~! corre-
sponding to a;, where X is the matrix X = [q),-(gp)].

F can be compared with the F-statistic Fy 1 p—; S0 that if F > Fy 1 p_1, a; is non-zero with (100 — o) %
confidence. The confidence level a that «; is not zero can also be determined by computing the o for
F =Fy 1 p—r. The importance of g; is therefore estimated by both the magnitude of a; as well as the level
of confidence in a non-zero a;.

The significance of regressor variables may be represented by a bar chart of the magnitudes of the
coefficients a; with an error bar of length 2Aq; (o) for each coefficient representing the confidence interval
for a given level of confidence a. The relative bar lengths allow the analyst to estimate the importance
of the variables and terms to be included in the model while the error bars represent the contribution to
noise or poorness of fit by the variable.

2.3 Sobol’ indices

The Sobol’ indices are sensitivity measures for arbitrary complex computational models. They estimate
the effect of the random input variables onto the model output [9]. This section just provides a short
introduction.

The models under investigation are described by a function Y = f(X), where X = (X1,X5,...,X,,) is
the random input vector consisting of n random variables (i.e. structural parameters) and where Y =
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(11,Ys,...,Y,) denotes the random output vector consisting of random variables (i.e. structural responses).
It is possible to decompose Y = f(X) into summands of increasing dimension [8].

FE) = YA Y FiX) ot fion(Xr e Xo) (13)
i=1

1<i<j<n

Each random model response Y; (j =1,2,...,m) is characterized by its variance D/. According to Eq. (13)
it is possible to decompose each variance D’ into partial variances associated with the single random
input variables X1,X>, ..., X, as follows:

p/ = Ypl+ Y DL+.+D{, , (14)
i=1 1<i<k<n

and to relate each partial variance to one Sobol’ index

D .
Sijdy = —=owith 1<ij<..ig<n, s=12,..n (15)

Each of the Sobol’ indices S;, . ;, represents a sensitivity measure that describes which amount of each
variance D’ is caused due to the randomness of the single random input variables and its mapping onto
the output variables.

In practice, all partial sensitivity indices involving the single input variable X; (i = 1,2,...,n) are summed
up to the total sensitivity index Sz, in order to evaluate the total effect of X; [2]. The total Sobol’ indices
consider thus interaction among the input variables.

Each Sobol’ index Sz, represents the sensitivity of the computational model regarding its input variable

X; without any assumption of linearity or monotonicity in the model. Two essential types of problems can
be studied with the aid of the Sobol’ indices:

1. Ranking of input variables in Y = f(X;,X,,...,X,)

2. ldentification of insignificant input variables in Y = f(X;,Xa,..., Xy).

The approach is to estimate the Sobol’ indices Sr,,Sr,,...,S7, and to order the variables according to
these values.

In order to quantify which amount of each variance D/ is caused due to a single input variable X; the
corresponding Sobol’ index S7; may be normalized according to Eq. (16).

St,

_— 16
ZZzlsTk (16)

normS7;

That is, input variable X; has a share in variance D/ of normsT;.

The Sobol indices are practically computed using Monte Carlo simulation [11]. Using Monte Carlo
simulation, the total effect of an input variable X; may be computed as

considering the effects not containing X;:

A L o) w0y (D) @)y 2
DLy = 5 Y XX V(X X)) = o (18)
k=1
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The superscripts (1) and (2) indicate that two different samples are generated and mixed. X,(J,')k denotes
the kth sample point with

1 1 1 1 1
x) = (Xl(k)’""X((if)l)k’X((ijl)k’""Xrgk)) (19)

The mean value f, may be derived by

R 1
fo—ﬁ

™=

J(Xy) (20)

k=1
Monte Carlo simulation is often time-consuming and may take days to run. This means that for computa-
tionally demanding models, e.g. finite element models in engineering mechanics, efficient meta models
should be applied. Besides polynomial response surface approximations, Neural and Radial Basis Func-
tion networks and Krigging approximations may also be used as response surfaces [10]. In this case,
an additional amount of variance due to the approximation in dependency of the quality of the response
surface appears. To take this additional variance into consideration the variance of the discrepancies
between the exact functional response and the response surface at the experimental points is computed
and denoted by D/,ex. The normalized total Sobol’ index S, is thus modified according to Eq. (21), where
D/ and Sy, are computed only using the response surface.
Sr, AJ
ZZ:] S‘Tk D
DI + Ditnex

normSr, =

3 Examples

3.1 Analytical Example 1
Two analytical functions

i = fi (X],Xz) = 10X, —|—05X23 (22)
Y, = fr(X1,X)=2X;—X; (23)

are investigated. Function Eq. (22) is nonlinear monotonic, Eq. (23) possesses a nonlinear non-monotonic
behavior.

The input variables are uniformly distributed in the interval [—5,5]. The function graphs are shown in
Fig. 1.

Fig. 1: Function plots of Y; and Y,
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In this preliminary sensitivity analysis relevant input variables should be identified and ranked for each of
the functions Egs. (22) and (23). The non-relevant variables that have none or only a small effect should
be removed to reduce the model size for subsequent investigations (i.e. an optimization).

The regression-based correlation coefficient, the variance-based linear and quadratic ANOVA, and the
Sobol’ indices are evaluated as sensitivity measures and compared. The linear (without interaction)
and quadratic ANOVA were carried out with the aid of LS-OPT [10] using 500 experimental points. It
is obvious from the function plots Fig. 1 that there is no non-relevant input variable. Both variables
contribute to the variance of the results ¥; and ¥,. The ranking of the variables can also be gained from
the plots. For Y; the input variable X; and for ¥, the input variable X, contribute most to the respective
variances of the results Y, and Y,. The results of a numerical sensitivity analysis should support this
visual interpretation. But in contrast to the Sobol indices the correlation and ANOVA do not, see Tab. 1.

Tab. 1: Results of the global sensitivity analysis ('LS-OPT results, normalized)

Y Y,
linear  quadratic linear  quadratic
rvy, ANOVA!  ANOVA! St. vy, ANOVA! ~ ANOVA! St,
X, 0.77 0.50 0.52 0.60 0.60 0.93 0.08 0.37
X, 0.58 0.50 0.48 0.40 0.00 0.07 0.92 0.63

Function Y,

Both sensitivity measures r,, ,, and Sz. will lead to the same ranking of the input variables X; and X,. Also
the ratio of importance between X; and X, is almost comparable (0.77/0.58 vs. 0.60/0.40). The linear
and quadratic ANOVA might be misleading, but also indicate the significance of both input variables.

The numerical value of the Sobol’ indices ST, = 0.6 and §T2 = 0.4 can also be expressed in terms of
variance or standard deviation. The input variable X; is responsible for 60% and X, for 40% of the
variance/standard deviation of the result variable Y, . Whereas the correlation coefficient measures
the linear relation between X; and Y;. Here also X; has a strong (linear) effect onto the result ;. As
proposed in the introduction for nonlinear monotone computational models, correlation coefficients and
Sobol’ indices lead to the same conclusion. However, the Sobol’ indices provide a clear idea of the effect
of each input variable onto the variance of the result variable.

Function Y,

Here the effect of the quadratic term X7 is neglected by the correlation coefficient as well as by the linear
ANOVA. That is obviously not the case. This term contributes significantly to the result ¥>. The quadratic
ANOVA as well as the Sobol’ index Sz, = 0.63 indicate that. The input variable X, is responsible for the
major part of the total variance, at which the quadratic ANOVA may overestimate the influence of X;.

3.2 Analytical Example 2
In the following the Ishigami-function [5]
Y3 = f3(X1,X2,X3) = sinX; + asin’X; + bX3sinX (24)

is investigated. The input variables are uniformly distributed in the interval [-n,z]. The example is
carried out using the numerical values a =7 and b = 0.1. The plot (X3 = 1.0) of this nonlinear and
non-monotonic function is shown in Fig. 2.

The results of the computation of the regression-based correlation coefficient, the variance-based linear
and quadratic ANOVA, and the Sobol’ indices are gathered in Tab. 2.

It is observed that the influences of X, and X3 are negated by the correlation analysis as well as by the lin-
ear ANOVA. The results of the quadratic ANOVA depend on the quality of the polynomial approximation.
Here the contributions of the input variable X, and the interacting input variables (X;,X3) are detected,
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Fig. 2: Function plot of the Ishigami function (X3 = 1.0)

Tab. 2: Results of the global sensitivity analysis (>LS-OPT results, normalized)

Y;
total effect
ruy, linear ANOVA?  quadratic ANOVA? S ;  quadratic ANOVAZ — Sp
Xi 0.44 0.69 0.11 0.314 0.29 0.45
X 0 0.15 0.42 0.442 0.35 0.35
X3 0 0.16 0.19 0 0.36 0.2
X1,% - - 0.01 0 - -
X1, X3 - - 0.25 0.244 - -
X2,X3 - - 0.03 0 - -
X1.X.Xs - - - 0 - -

however the significance of X, is negated. The total effect of X; is thus underestimated by the quadratic

ANOVA.

As a conclusion, this academic example shows the potential of the global sensitivity analysis by the
Sobol’ indices to investigate the dependencies of nonlinear functions with respect to the input param-
eters. Indeed all three input variables are important, which the common correlation analysis and the
linear ANOVA are not able to detect. Due to the limited capacity of the polynomial approximation used
by the quadratic ANOVA the associated ranking of the input variables is differing to the Sobol’ indices.

4 Crash application

The global sensitivity analysis in view of nonlinear structural behavior is demonstrated by means of a
front crash of a car model against a stonewall [4].

-

Fig. 3: Front crash of a car model against a stonewall
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The design parameters are th_1_re, th_2_re, th_1_1i, and th_2_1i, that is, the sheet thickness of the
cross sections according to Fig. 4.

th 2 re

o z2%iof mean

mean

v

sheet thickness th_2_ 11

Fig. 4: Design parameters

The considered responses are

— the chest acceleration
— the front cross section forces

— the mid cross section forces

as highlighted in Fig. 5 below.

stonewall force

front mid

cross section forces

Fig. 5: Evaluated responses of the car model

There is no information about the probability distribution functions (pdf’s) of the design parameters. In
that case, a straightforward approach of a normal probability distribution of the parameters is assumed.
It has to be kept in mind that those possible existing probability distributions that normally differ from
the normal pdf could influence the results of the sensitivity analysis significantly. The global sensitivity
analysis was carried using 100 experimental points.

The results of the global sensitivity analysis are visualized with the software tool D-SPEX [12]. The
correlation coefficients together with anthill plots are shown in one single plot window, Fig. 6.
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Fig. 6: Correlation coefficients and anthill plots

The parameters th_1_re and th_2_re are investigated. The correlation coefficient indicates that the
parameter th_1_re has a strong effect onto the front cross section forces, whereas the contribution
of th_2_re with respect to the front cross section forces is insignificant. This also corresponds to the
results of the linear ANOVA computed by LS-OPT, Fig. 7.

)] Figure 1; Plot Window #3 [=]a])x]
DEES| K RAT® €08 =0 ~

th1 Ii inoise, dist=th1 1i) thz Ii (noise, dist=thz Ii) th1 re (noise, dist=th1 re) thZ re (noise, dist=thZ re)

chestx ace

SECFORC mid re:

SECFORC frant re

-0.08

ITI

Fig. 7: Linear ANOVA results
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The results of the quadratic ANOVA computed by LS-OPT are characterized by an extremely low con-
fidence level, visualized in D-SPEX by large red error bars, Fig. 8(a). That is, the quadratic response
surface used by the quadratic ANOVA is not able to represent the experimental response values. The
quadratic ANOVA is thus unsuitable for global sensitivity analysis in the context of this example. In
contrast to this, the LS-OPT results of the linear ANOVA suggest a comparatively high confidence level,
Fig. 8(b), particularly the contribution of th_1_re with respect to the front cross section forces is char-
acterized by short red error bars. At first sight, the linear ANOVA seems thus to be suitable for global
sensitivity analysis in the context of this example.

Figure 1: Plot Window #1 o)) (@ Figure 1: Plot Window #1 [EBEE)

L]
DeE& keayE@Ee nalso DeE& @ e 08O

SECFORC_frant_resp
SECFORC_mid_resp

SECFORC_frant_resy

p th2_re (noise, dist=th2_re)
SECFORC_mid_resp

th1_re (noise, dist=th1_re)

Fig. 8: Errors bars of the quadratic (a) and the linear (b) ANOVA results

The Sobol’ indices are computed using a feedforward neural network metamodel. The results are shown
in Fig. 9.

] Figure 1: Plot Window #1 (=](a](x]
osEs| heane 0B =0

chestxacc (olal e SECFORC mid resp (el effect) SECFORC fiont resp (otal effec)

Fig. 9: Plot of normalized total Sobol’ indices normsSt,

In the Sobol’ indices plots the length of each section in one stacked bar represents the contribution
of the specific parameter (th_1_re, th_2_re, th_1_1i, th_2_11i) to the total variance of the respective
result (right chart). The left chart is an alternative depiction and illustrates the significance of the specific
parameter to the single results and to all of the results.

The results of the global sensitivity analysis with respect to the parameters th_1_re and th_2_re are
gathered in Tab. 3.

© 2008 Copyright by DYNAmore GmbH



7. LS-DYNA Anwenderforum, Bamberg 2008

Tab. 3: LS-OPT results of the global sensitivity analysis
front cross section force

#  linear ANOVA  Sp.
th_1l_re 052 1.06 0.18
th_2_re -0.09 -0.08 0.45

In contrast to the correlation analysis and the linear ANOVA the contribution to the front cross section
forces of the variable th_2_re is most significant (45%). This discrepancy may be explained with Fig. 10.

Figure 1: Plot Window #1 ‘ZHEHZ‘
O

FEH&E LRANE € 08 O -

cross section force front

117 116 115 114 113 112 111 11 1.09 1.08
the re {noise, dist=th2 re)

Fig. 10: Experimental points and linear regression

Fig. 10 shows the values of the front cross section forces in dependency of the experimental values of
th_2_re and the belonging linear regression used by correlation analysis and linear ANOVA. It is observ-
able that small values of th_2_re cause a major variance of the front cross section forces. This nonlinear
effect is taken into account by the Sobol’ indices but can not be represented by linear regression. Reca-
pitulatory, the suitability of correlation analysis and linear ANOVA for global sensitivity analysis (amongst
others pretended by the high confidence level in Fig. 8(b)) is not objective in context of this example.

5 Conclusion

In this paper three different global sensitivity analysis approaches are presented with particular con-
sideration of nonlinearity of the underlying computational model. The approaches are compared and
demonstrated by means of analytical and practical examples. The correlation coefficient reflects the
strength and direction of a linear relationship, but not any aspects of nonlinear relationships. The same
applies to the linear ANOVA. The quadratic ANOVA may take nonlinearities into account, but restricted in
terms of a quadratic approximation. The Sobol’ indices are sensitivity measures for arbitrary (nonlinear)
computational models. They quantify which amount of the variance of result variables is caused due to a
single input variable or combinations thereof. Recapitulatory, correlation analysis and the linear ANOVA
yield only approximate solutions for (weak) nonlinear monotonic problems, the quadratic ANOVA may
take quadratic effects into account, for nonlinear non-monotonic problems relevant input variables are
only identified by the Sobol’ indices.
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