#### **Developments in LS-DYNA Dummy Models**

R. Kant, A. Malak, J. Rasico, F. Zhu (Humanetics Europe GmbH)

# Crash Test Dummy Variability and CAE



Jim Rasico, <u>Robert Kant</u>, Jerry Wang, Paul Lemmen October 12-13, 2010, Bamberg



## Content

- ► Humanetics Innovative Solutions
- ► Variability in crash testing
- ► Crash dummy variability minimization
- ► CAE needs and solutions
- **►** Summary





## **HUMANETICS INNOVATIVE SOLUTIONS**

## **Humanetics Innovative Solutions**

- First Technology Safety Systems (FTSS) and Denton ATD are now subsidiaries of Humanetics Innovative Solutions
- Rebirth of the original Humanetics combining expertise, experience, and knowledge from both companies to provide a stronger platform for the next generation of innovative dummy products.









# VARIABILITY IN CRASH TESTING

## Variability in Crash Testing

#### Vehicle product development

- Meet targets at shortest time and lowest costs
- Need for over-engineering due to <u>un-quantified sources of variability</u> to avoid surprises

#### Variability in crash testing comes from all components in the entire chain

- Vehicle, restraint systems, test tools, instrumentation
- Procedures and human factors involved

| Dimensions | Manufacturing | Speed        | Lab-to-Lab  |
|------------|---------------|--------------|-------------|
| Weight     | Temperature   | Acceleration | Calibration |
| Material   | Humidity      | Dynamics     | Operator    |
| Friction   | Aging         |              | Procedural  |

Tolerances and human factors must be minimized and procedures improved !!





## Variability in Crash Testing

# Crash dummies are sophisticated products with relatively large variation due to:

- Design complexity: Improved Bio-fidelity results in increased variability
  - Many components to represent complicated structures
  - Hard and soft materials resistant to impact
  - Soft material properties changing over time
  - Broad spectrum of loading conditions
- Low volume business limiting investment possibilities
  - Manual operations in manufacturing
- Positioning and lack of robust procedures
- (Historically) different materials, geometries, and design used by different manufacturers







# CRASH DUMMY VARIABILITY MINIMIZATION

#### **HARMONIZATION**

How?

One brand where possible

**Driven by** 

Customer and government agencies

**Examples** 

- BioRID -FLEX-PLI-GTR -WorldSID

www.humaneticsatd.com/harmonization n-commonization/harmonization



#### **HARMONIZATION**

One brand where possible

#### **COMMONIZATION**

Use common components, materials, etc.

#### **Driven by**

How?

Customer and government agencies

Humanetics with customer approval

#### **Examples**

- BioRID -FLEX-PLI-GTR -WorldSID

see

www.humaneticsatd.com/harmonizatio n-commonization/harmonization - One steel skeleton
-One Foam to fill vinyl
components
-Non-tested Rubber parts
molded the same (bumpers,
stops, etc.)
Machining Parts/Weldments
Surface Finish



#### **HARMONIZATION**

One brand where possible

#### **COMMONIZATION**

Use common components, materials, etc.

#### **CORRELATION**

Use common test equipment to certify

#### **Driven by**

How?

Customer and government agencies

Humanetics with customer approval

Humanetics with customer approval

#### **Examples**

- BioRID -FLEX-PLI-GTR -WorldSID

see

www.humaneticsatd.com/harmonizatio n-commonization/harmonization

- One steel skeleton
  -One Foam to fill vinyl
  components
  -Non-tested Rubber parts
  molded the same (bumpers,
  stops, etc.)
  Machining Parts/Weldments
  Surface Finish
- FTSS parts test on Denton cal fixture
- Denton parts test on FTSS fixtureHarmonizing fixtures



#### How?

#### **HARMONIZATION**

One brand where possible

#### **COMMONIZATION**

Use common components, materials, etc.

#### **CORRELATION**

Use common test equipment to certify

#### **OPTIMIZATION**

Further reduce tolerances

#### **Driven by**

Customer and government agencies

Humanetics with customer approval

Humanetics with customer approval

Humanetics
with
customer approval
and
government
agencies

#### **Examples**

- BioRID -FLEX-PLI-GTR -WorldSID

see

www.humaneticsatd.com/harmonizatio n-commonization/harmonization

- One steel skeleton
  -One Foam to fill vinyl
  components
  -Non-tested Rubber parts
  molded the same (bumpers,
  stops, etc.)
  Machining Parts/Weldments
  Surface Finish
- FTSS parts test on Denton cal fixture
- Denton parts test on FTSS fixture
  - Harmonizing fixtures

- Additional certification
- Tighter corridors
- Control of material and geometry
- Manufacturing process
- Support to improve positioning procedure

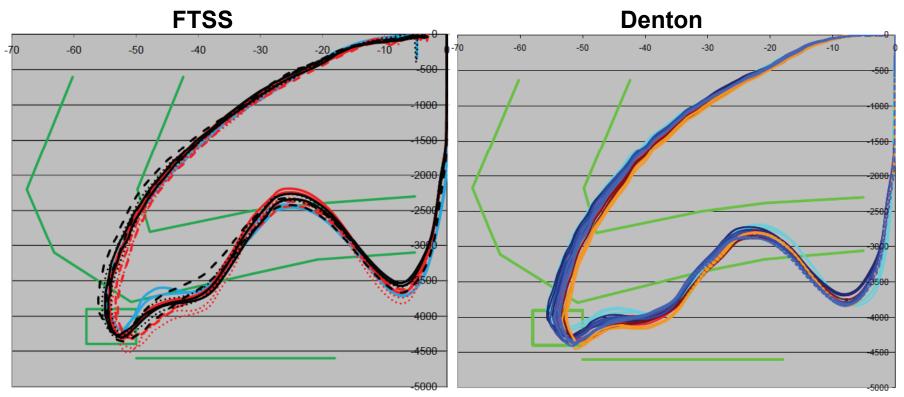




## CAE NEEDS AND SOLUTIONS

### The Role of CAE

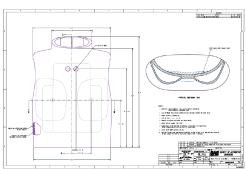
#### Variability can be reduced but not removed!


A robust design process is needed to comprehend variability

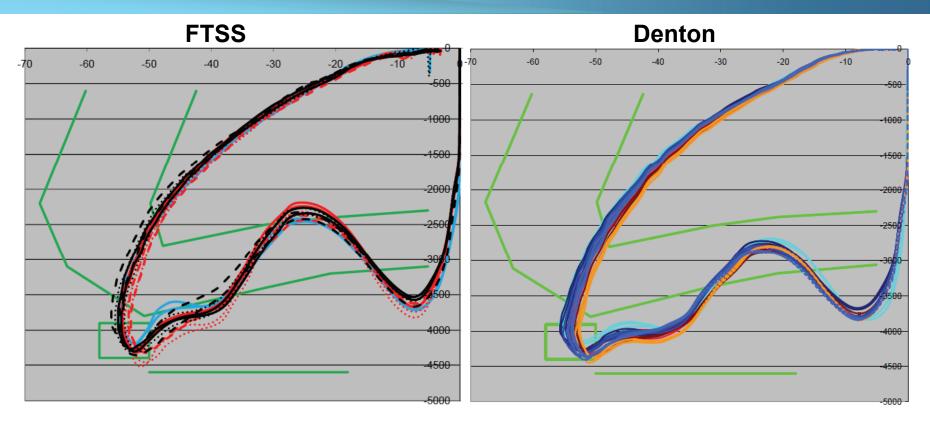
#### **Humanetics goals:**

- 1. Models predicting average dummy response
- 2. Quantification and understanding of variability
- 3. Models predicting the full spectrum of dummies in the field




## H3 5th Thorax from different brands




# Results of 35 thorax certification tests with "harmonized" jackets

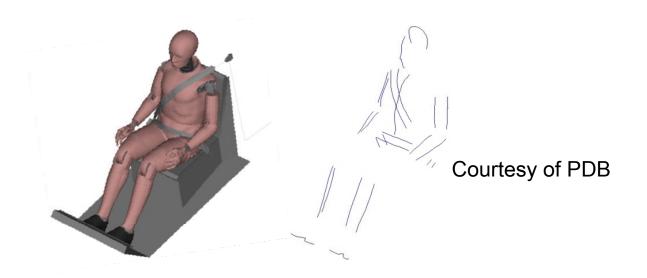
- FTSS significantly softer than Denton @25 mm
- Difference is dominated by ribs.





## H3 5th Thorax from different brands



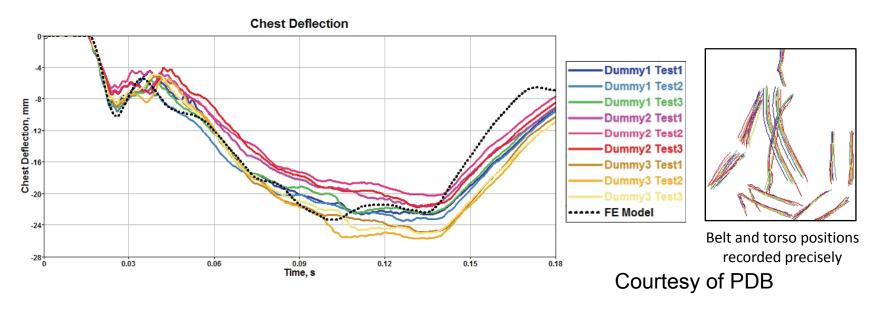

- Dummy Hardware Commonization progress is essential but depends on customer approval
- A CAE Solution is required to capture differences between dummies in general



## Positioning variability

#### **Point of interest**

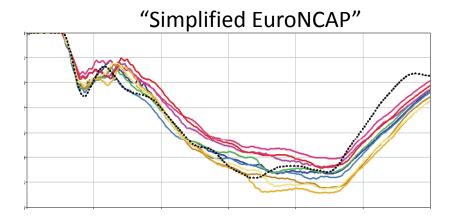
Variability due to dummy positioning




#### **Data set**

- H350, simplified sled test
- Rigid seat, belted, retractor, and pre-tensioner
- Scaled-down EuroNCAP pulse
- 3 dummies from one Brand ( 3 repeats)




## Positioning variability



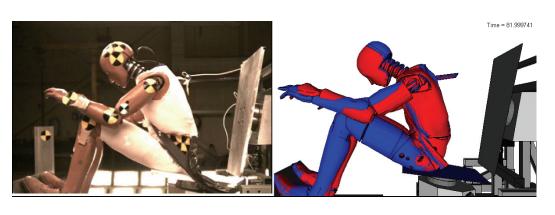
- 3-7% chest peak variation is observed when the same dummy is used in a well controlled environment
- Influence of positioning is likely much bigger in standard environment
- Potential to reduce variability due to improved positioning
- The CAE process should take positioning variability into account!

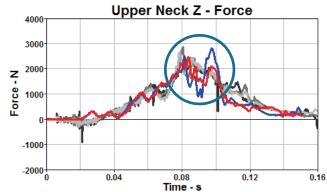


## **Dummy variability**



- ~ 25% chest peak variation is observed when comparing different dummies in well controlled environments
- Complex belt-shoulder interactions can play a dominant role rather than the ribs
- Potential to reduce variability and the CAE process should represent the performance of the dummy population





## **Extremity joint variability**

#### **Point of interest**

Variability due to ligament joint friction setting (human factor)

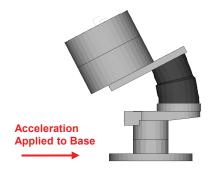
Test1 Test2 Test3 Model 1 g Model 4 g

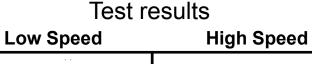


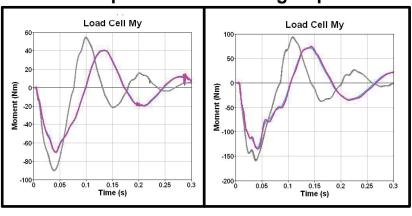


- A large variation can be observed due to dummy joint frictions settings
- Properly capturing the joint friction moments in the CAE process is required

#### Data set


- Rigid seat
- Pulse: generic small car, 35 mph, into rigid barrier
- Belted, load limiter, retractor, pre-tensioner
- 1 dummy (3 repeats)





## **Dummy material variability**

#### **Point of interest**

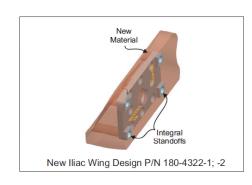
Variability of aging of certified lumbar spine

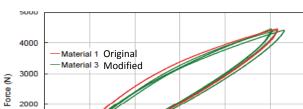






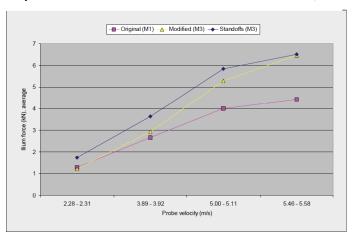
21 months old spine
Brand new spine
Brand new spine


- Variability due to aging can be significant and should be quantified and understood
- Hardware may be improved and the models should represent aging effect




## **Dummy material variability**

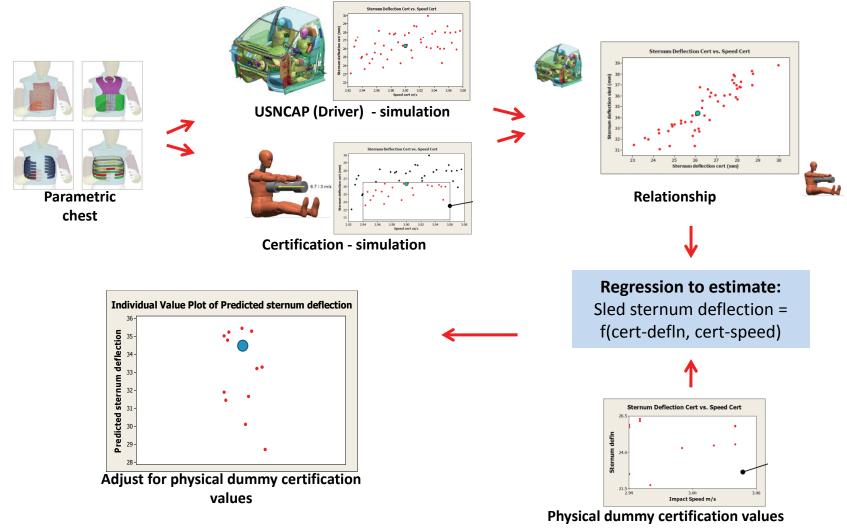
#### **Point of interest**


 Variability of SID-IIs Iliac Wing due to urethane material replacement





Quasi static test - no difference 1000 Deflection (mm)


Dynamic tests – ~ 30% difference at 5 m/s



Material changes can have affect on dummy performance



## Example: Parametric dummy model





Courtesy: Jaguar Land Rover



# **SUMMARY**

# Summary

#### **HARDWARE**

- ► Variability in passive safety testing comes from all components in the entire chain and must be minimized and controlled
- ► Part of variability is caused by the crash test dummy
- Humanetics minimizes variability of dummies through:

Harmonization - One brand where possible

Commonization - Material, geometry and manufacturing alignment of regulated

dummies from different brands

Correlation - Common equipment to certify

Optimization - Reduce tolerances



# Summary

#### **VIRTUAL**

- ► CAE can account for the remaining variability in vehicle design:
  - Hardware variability can be reduced but not removed
  - Addressing sources of variability is required

#### Humanetics goals:

- 1. Models predicting average dummy response
- 2. Quantification and understanding of performance variability
- 3. Models predicting the full spectrum of dummies in the field





# **THANKS!**