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Abstract: 
 
Roller hemming is an operation used in the construction of vehicle body parts and follows on from 
deep drawing, trimming and folding the flange to produce a metal-formed joint between the outer skin 
part and the inner part of vehicle body parts. 
The roll-in and the appearance of the hem can be pre-examined and optimized if necessary by means 
of the finite element method (FEM). This enables process planning and the commissioning process to 
be supported at an early stage. Alongside the targeted simulation-based investigation of individual 
processes, it is possible to conduct virtual FEA tests according to the methods of the “design of 
experiments” (DoE). As a result of study, an empirical model can be derived which quantitatively 
describes the correlation between the influencing factors investigated and the target figures (e.g. roll-
in).  
This article describes the development of a response surface model on the basis of a quadratic 
regression approach and a neural network between FEA simulation results of certain factor 
combinations from pre-strain, geometry, flange length, rolling direction and pre-hemming robot paths. 
With the aid of this model, roll-in should be determined by means of known boundary conditions of 
different components, as well as the outer radius of the hem. The results from the empirical models 
are tested for applicability with the results of experimental tests using the example of a door. 
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1 Introduction 

 
During the start-up of roller hemming systems, it is often necessary to optimize the robot program, 
programmed offline, manually on site. One focus, for example, is on controlling the roll-in of the outer 
sheet in order to achieve as narrow and constant a gap dimension as possible after assembly. The 
robot programming for the roller trajectory is mostly based on individual empirical values. The roller 
hemming process can be tested and optimized during the planning phase by means of FEA 
simulations. Due to the necessary complexity of the FEA model and the multi-stage nature of the roller 
hemming process, relatively high computing power and/or time is required for just one variant. The 
computing time with 16 CPUs for an industrial component is, for example, currently in the region of 48 
hours with explicit solvers. Depending on the boundary conditions, computing times of up to 36 days 
on 4 CPUs may be required [1]. 
There is theoretical potential for quicker support of the roller hemming planning process in empirical 
models, for example, which enable the use of mathematically described process experience from 
simulations or experiments. In order to generate this in a targeted way for a defined process window, 
numerous simulations and a high level of process understanding are needed at first. Later use of the 
empirical model in the planning phase requires very little time and in princible no computing capacity. 
 

2 Basic principles 

2.1 Description of the roller hemming process 

Hemming is an operation used in the construction of vehicle body parts and follows on from deep 
drawing, trimming and folding the flange to produce a metal-formed joint between the outer skin part 
and the inner part of the vehicle body. 
 

 
 
 
Figure 1: Simplified hemming process in automotive industry (hood) 
 
The sheets are joined by bending without the use of any additional fasteners and this operation is 
generally combined with a bonding process. The advantages of this joining process are the low weight 
of the joint, increased component rigidity and minimized risk of injury due to the elimination of sharp-
edged end pieces. Parts of the vehicle body that are normally hemmed include engine hoods, doors, 
trunk lids and fenders. 
Two hemming processes are generally used to manufacture vehicle body parts: conventional press 
hemming and roller hemming. The roller hemming process is outlined below. 
 
In addition to conventional press hemming, the roller hemming process is used in the production of 
vehicle body parts based on economic and technological criteria. After the deep drawing and trimming 
of the vehicle body outer skin part, the flange is normally positioned using a folding tool. However, the 
hemming process is completed incrementally by means of a hemming roller operated by an industrial 
robot (Figure 2).  
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Figure 2: Roller hemming 
 
Depending on the component and the robot positions, rollers of varying geometries and diameters can 
be used. Depending on the opening angle, the roller hemming process can be subdivided into the 
steps of prehemming and final hemming. During the first prehemming step (Figure 3), the flange 
initially opened at an angle of 90° is closed by 30° to create an opening angle of 60°. During the 
second prehemming step, the flange is closed by a further 30°.  
 

 
Figure 3: Process steps of the roller hemming process [4] 
 
After the third process step, “final hemming”, the flange is closed in a similar manner to the 
conventional press hemming process. Depending on the extent of the initial opening angle between 
the positioned flange and the outer part, the roller hemming process may incorporate additional 
prehemming steps. Depending on the boundary conditions, it is also possible to use one-off 
prehemming of 45° [2], which reduces the cycle time per vehicle body part. 
Of particular interest in this context is the ability to achieve an optimum gap dimension between the 
vehicle body parts. Along with the external radius, the optical gap dimension is defined by a range of 
factors that includes the actual distance between the two outermost folded edges (Figure 4), which is 
influenced by the roll-in. 
 

 
 
Figure 4: Optical gap dimension and roll-in 
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The roll-in incurred depends largely on the roller’s trajectory. For this reason, it is important to ensure 
that the roller’s actual trajectory is exactly reproduced within the simulation.  
 

2.2 Basic principles of empirical models 

By adjusting a basic mathematical model to available data by means of a regression analysis, it is 
possible to achieve an approximate definition of the correlation between input parameters xn and 
results yi. The result achieved can thus be determined via the known factor levels of the input 
parameters between the available key data.  
 

processprocess
input parameters xn results yi

empirical modelempirical model

)(ˆ
ii xgy =
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Realitiy (or FEA-Simulation)
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Figure 5: Use of empirical models 
 
As it is irrelevant whether the input parameters are specifically varied or merely observed, an empirical 
model is the result. If an empirical model is already based on other models in the form of FEA 
simulations, it can also be called a metamodel. Linear and quadratic terms find broad distribution as a 
basic mathematical description g(x), as does the use of neural networks. 
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Figure 6: Model approaches 
 
The general form of a basic quadratic function is: 
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The coefficients are now selected in such a way that the estimated value corresponds to the 
measured data as precisely as possible. This is done within a regression analysis by minimizing the 
squared deviations of g(xi) and f(xi): 
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After calculating the coefficients, it is possible to estimate the results within the design space not only 
for the existing sampling points but also for any factor levels in between. 
 
Neural networks can understand considerably more complex curve shapes than is possible with 
quadratic approaches. They are largely based on a type of summands (neurons) which receive a 
certain weighting factor W depending on the factor level of the input parameters. This means that each 
summand is individually networked with the input factors via the weighting factors, which is similar to a 
biological nerve structure [10]. Each neuron also has a transfer or activation function f(x) 
 
In this study, the following functions are used as per [3]: 
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 H: Number of input factors K: Number of neurons 
 
The individual weighting factors W are adapted iteratively to the existing data basis by means of a 
training algorithm. 
 

3 Development of a metamodel on the basis of basic geometries 

The following section describes the development process of a metamodel for general 
predetermination of the roll-in and external radius process results. 

3.1 Selection of process parameters in line with significance tests 

Only relevant input parameters should be included for the process in the metamodel. For this reason, 
it is recommended to conduct a significance analysis according to methods of the design of 
experiments (DoE) in order to reduce calculation effort. Partial results have already been published for 
this purpose in [4]. Relevant input factors include: 
 
- geometry (concave, convex curvature) 
- thickness of the blank 
- radius of the flanging tool 
- position of the inner part 
- pre-strain of the outer blank 
- position of the roller during the two pre-hemming steps (including rigidity of the robot) 
- angle of the roller during pre-hemming 
- rolling direction of the blank 
- blank material 
- length of the flange 
 
As factors such as blank material, blank thickness and radius of the flanging tool are generally known 
during the planning process, these can be selected as constant for the first version of a metamodel. 
The input parameters to be used are therefore limited to the following input factors: geometry 
(curvature), pre-strain, positions of the roller during pre-hemming, rolling direction of the blank and 
length of the flange.  
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Figure 7: Input factors: Curvature, position of the roller and flange length 
 
Altogether, six input factors are considered and two results incorporated within the metamodels. 
 

3.2 Description of the used sampling method 

A data basis is required to develop the empirical model. The factor levels in which the input factors are 
to be varied must be determined in advance. This is done by means of sampling. There are many 
strategies and methods for filling the design space. In this case, a classical, centrally compiled test 
plan is selected.  
 

 
 
Figure 8: Centrally compiled test plan (three-dimensional) 
 
This comprises a six-dimensional factorial cube and superimposed star-shaped center. The test plan 
described is suitable for quadratic models as per [5]-[7]. Each input factor takes on five different factor 
levels within the test plan. 
 
In detail, these are: 
 

Input factor -2.5 -1 0 1 2.5

pre-strain (plainstrain) 0% 4.8% 7.80% 11.20% 16%

roller position prehemming I 2.7 mm 3.3 mm 3.7 mm 4.0 mm 4.6 mm

roller position prehemming II 2.7 mm 3.3 mm 3.7 mm 4.0 mm 4.6 mm

rolling-direction of the blank 0° 27° 45° 63° 90°

curvature radius
90 mm 

(concave)

225 mm 

(concave)

infinite

(straight)

225 mm 

(convex)

90 mm 

(convex)

flange lenght 6.0 mm 7.8 mm 9.0 mm 10.2 mm 12.0 mm  
Table 1: Input factors and levels 
 
According to the test design, there is a total of 77 sampling points, which consist of the four individual 
process stages of flanging, pre-hemming I, pre-hemming II and final hemming. There are therefore up 
to 308 individual simulations. 
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The 1.15 mm sheet thickness from sheet material AA6014 serves as a boundary condition for 
modeling. The folding radius is 1.5 mm, the sheet thickness of the inner part 2.0 mm and the roller 
diameter 60 mm. During the two pre-hemming stages, the flange is closed by 30° in each case. These 
limits are necessary to reduce the number of simulations necessary to a manageable amount. 
 

3.3 Configuration of the FEA simulation 

The FEA simulations were conducted with the LS-Dyna explicit code. The fully integrated type 16 shell 
element was used for this. The formulation in line with Barlat ’89 was used as the material model. The 
element edge length was 0.2 mm by 0.25 mm (height x width). The results were in each case 
determined from the middle of the test geometries. 
 

 
Figure 9: FEA roller hemming model in LS-Dyna [8] 
 
The metamodels from the simulations were created using the program “Minitab 15” (quadratic 
response surface) and “LS-Opt 4.1” (neural network). 
 

4 Result of empirical modeling 

After the regression analysis has been performed, the following connection for the roll-in (RI) result is 
produced for the quadratic response surface (RSM): 
 

2112

2

1116655443322110
...ˆ xxxxxxxxxyi ⋅⋅+⋅+⋅++⋅+⋅+⋅+⋅+⋅+= βββββββββ + …       (4) 

 
x1: Radius of curvature: positive = convex, negative = concave, 0 = straight 
x2: Pre-strain 
x3: Position of the roller during pre-hemming I (Figure 7: h) 
x4: Position of the roller during pre-hemming II (Figure 7: h) 
x5: Length of the flange (Figure 7: l) 
x6: Rolling direction 
 
The model is optimized to a confidence interval of 95% during the regression. The rolling direction was 
classified as not significant in comparison to the other parameters. 
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5 Validation of the metamodels by means of experimental data 

The quality of the predictions for roll-in and external radius of the two metamodels is to be assessed 
by a comparison with experimental data. The test structure is described briefly below. 

5.1 Description of experimental set-up and assessment 

The roller hemming process for a rear door was performed under experimental conditions to validate 
the metamodels. The geometry of the component is particularly suitable as it has concave and convex 
curvatures in the wheel area and a straight contour in the sill area. This means that a full range of 
typical component curvatures is represented. The material in question is an AA6014 aluminum alloy 
with a sheet thickness of 1.15 mm. The sheet thickness of the inner part is 2 mm in the investigated 
areas. 
The component has a flange which stands open at 90° in the investigated area. For reasons of 
accessibility, not only cylindrical rollers were used, but also tapered rollers during pre-hemming in the 
wheel area. 
The roll-in and the external radius were measured at twelve defined component positions for each 
door. Holes were provided for measuring the roll-in (like presented in [9]). The distance of the drill hole 
to the exterior contour was determined using a special digital measuring device for both the folded 
component and after the final hemming. The roll-in is obtained by calculating the difference. In 
independent measurements by three testers, a check of the measuring device revealed a 
measurement fluctuation of below 0.1 mm. 
The radius operating line was determined by means of micrographs. For this purpose, samples were 
sawn out of the component and prepared by grinding for measurement of the external radius under a 
light microscope. 
 

 
 
Figure 10: Door and measuring points 
 
It is possible to measure the external radius using an integrated and calibrated measurement system. 
 

 
 
Figure 10: Examples of hem microsections 
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In order to identify the true values of the position of the rollers during pre-hemming steps, the Krypton 
K600 measurement system was used, which was already for a roller hemming process in [8]. This 
ensures that no falsifications due to robot programming and insufficient robot rigidity affect the 
validation of the metamodels. 
 

5.2 Description of the test program 

So as to draw on as representative a spectrum of data as possible for the validation of the 
metamodels, the robot program was varied for the components used. Investigations were performed in 
advance to identify the path parameters in order to concentrate the roll-in characteristics in a typical 
range from 0 to 0.55 mm. This is the later target range for the productive application of the 
metamodels. A total of five different roller trajectories combinations were programmed, with repetition.  
 

Programm h1* h2**

A 2,2 mm 3,2 mm

B 3,2 mm 2,2 mm

C 2,2 mm 2,2 mm

D 3,2 mm 3,2 mm

E 2,7 mm 2,7 mm

*  about + 2 mm (caused by low robot rigidity)

** about  + 0.65 mm (caused by low robot rigidity)  
Table 2: Robot programs 
 
The robot program entered differs from that actually performed as a result of low robot rigidity. 
Although during the second pre-hemming stage the overall spatial offset was greater than during the 
first with a smaller load due to the lower robot rigidity, the effect on the parameter h2 was effectively 
much less as a result of the wider roller angle (trigonometric function). 
A total of 120 representative measurement values are therefore available in reference to roll-in 
measurement. Furthermore, a total of 60 micrographs were created at positions with characteristic 
curvature (measuring points 1, 4, 5, 8, 9, 11). 
 

5.3 Comparison of the roll-in 

An estimate of the roll-in can be obtained as an answer from the metamodels by inserting the 
appropriate factor levels. The pre-strain figures were read out from the deep-drawing FEA simulation. 
The curvature values were determined by means of the CAD data. As there are up to 120 
measurement values, it is recommended to make a statistical analysis of the errors in the metamodels 
in comparison with the experimental values. 
The average error can be calculated as follows: 
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This value alone is not meaningful. Error fluctuation must also be taken into account in the form of 
standard deviation. This is estimated with (6) as follows: 
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The model errors can be described in good approximation within a normal distribution: 
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Figure 11 shows the metamodel errors over the entire data volume with regard to the roll-in in the form 
of histograms.  
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Figure 11: Deviation between metamodels and experiments (roll-in; whole part) I 
 
Both models show a mean error of a few hundredths of a millimeter. However, both models have a 
standard deviation of approximately 0.12 mm to 0.13 mm. This engenders relative uncertainty with 
regard to each individual value. 
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Figure 12: Deviation between metamodels and experiments (roll-in) II 
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Different ranges of accuracy of the metamodels become clear by a separate analysis of the geometric 
boundary conditions. The following can be said: 
 
- over two-thirds of all measurement results in the case of concave curvature were predicted by the 

RSM with an absolute error in the range of –0.114 mm to 0.063 mm. Given current tolerance 
requirements, this is a very acceptable result. 

- over two-thirds of all measurement results in the case of straight contours were calculated by the 
NN with an absolute error in the range of –0.076 mm to 0.097 mm. 

- over two-thirds of all measurement results, the error in the case of convex curvature was in the 
range of –0.11 mm to 0.19 mm (RSM), which represents twice the level of uncertainty. 

 
In summary, the use of the quadratic RSM for concave geometric curvatures can be recommended 
with very good approximation on the basis of this validation. The NN has slight advantages for linear 
contour sections. Convex areas can be estimated with twice the level of uncertainty for both models. 
 

5.4 Comparison of the external hem radius 

Errors in the metamodels when assessing the external radius are investigated in the following. This is 
also done by means of a statistical analysis. 
All measurement points are considered in Figure 13. Both models again show a mean error from 
almost zero upwards with an increased standard deviation.  
 

0,60,40,20,0-0,2-0,4

18

16

14

12

10

8

6

4

2

0

0,60,40,20,0-0,2-0,4

RSM (whole part )

o
b
s
e
rv
e
d
 f
re
q
u
e
n
c
y

NN (whole part)

mean error 0,001667

Std. deviation 0,2343

N 60

RSM (whole part )

mean error 0,04933

Std. Deviation 0,2497

N 60

NN (whole part)

External radius
Error: Models versus experiments

 
Figure 13: Deviation between metamodels and experiments (external radius) I 
 
In Figure 14, a distinction is drawn between the errors based on the geometric boundary conditions. 
Here, too, there are differences in the quality of the predictions: 
 
- over two-thirds of all measurement results for straight contours are predicted with an error of –0.04 

mm to 0.11 mm by the quadratic RSM. 
- over two-thirds of all measurement results for concave curvatures are predicted with an error of –

0.27 mm to –0.04 mm by the quadratic RSM. The external radius is regularly predicted as larger. 
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- as with the prediction of the roll-in, there is significantly higher uncertainty with the estimate of the 
external radius for convex curvatures. Here, the error for the prediction by the model is 0.03 mm to 
0.48 mm for over two-thirds of all measurement points (neural network). 

 
For the prediction of the external radius, the error in the case of linear contours is lowest when using 
the quadratic RSM and within an acceptable range. For concave curvatures, the fluctuation of the 
RSM error is in the same range, while the mean value shows a tendency to predict the external radius 
as too large by 0.15 mm. The external radius for convex curvatures can be determined with a 
relatively low level of reliability. On average, the radius operating line is predicted to be 0.25 mm 
lower, with twice as much fluctuation as with concave curvatures. 
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Figure 14: Deviation between metamodels and experiments (external radius) I 
 

6 Summary 

This study described the development of two empirical metamodels on the basis of FEM roller 
hemming simulations. Test geometries with specific boundary conditions serve as the basis. The aim 
is to be able to make statements regarding the roll-in and hem geometry for roller hemming processes 
involving real components with the aid of these metamodels. Both a quadratic approach (RSM) and a 
neural network were used. 
In order to make a statement on the accuracy of the metamodels with regard to their practical 
application, the errors of the model predictions for five different roller hemming processes for a rear 
door were calculated at several measurement positions. Minor errors and error fluctuations were 
identified in the case of straight contours and concave curvatures. With regard to the roll-in, these 
were in the range of approximately ±0.09 mm (first standard deviation). With regard to the external 
radius, the error fluctuation was in the range of ±0.12 mm (first standard deviation), with a mean error 
of 0.04 mm (straight) and 0.15 mm (concave curvature) respectively. In view of current tolerance 
requirements, the first planning process of roller hemming programs can thus be supported effectively 
by the metamodels. 
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