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■ For modern processes and materials, the mechanical properties of the finished 

part highly depend on the fabrication chain 

■ Tooling has to be compensated for springback and shape distortions which 

occur in the fabrication chain 

 

 

 

 

 

■ Numerical simulations of the complete process chain necessary to predict 
finished geometry and properties 

■ The individual stages pose very different requirements on the numerical solver 

Simulation of the manufacturing process chain 
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■ Different state-of-the-art shell element formulations  
■ A variety of anisotropic, (visco-)elasto-plastic material formulations 
■ Forming contacts  
■ h-adaptivity for improved accuracy and reasonable simulation times 
■ Implicit (e.g. gravity) and explicit (e.g. closing, drawing) operations 
■ Trimming functionality 

Forming simulation in LS-DYNA 

DYNAmore GmbH



4 

■ Coupled thermo-mechanical simulations 
■ Thermal contact mechanics 
■ Among others, tailored material formulation MAT_UHS_STEEL 

■ Phase transition of austenite into ferrite, pearlite, bainite and martensite for cooling 
■ Thermo-visco-elasto-plastic properties can be defined for individual phases  
■ Transformation induced plasticity algorithm 
■ Hardness computation 

■ Tool cooling analysis is also possible 
 

 

Hot stamping simulation 
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■ Realistic description for the heat source applied to the weld seam 
 

■ Weld seams are usually discretised with solid elements in the pre-processing  
■ Before the weld torch has reached the material, filler should not influence the outcome 

■ Very low mechanical stiffness 
■ Very low heat conduction 

■ When affected by the heat, material should respond as the surrounding material 
 

■ Due to the very high temperature, annealing effects have to be considered 
 

■ Material should be able to account for the microstructure of the alloy 
■ Phase changes in heating and cooling 
■ Transformation induced strains 

 
 

Welding simulations – requirements 
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■Modeling Heat Sources in LS-DYNA 
■ The Goldak heat source 
■ Heat sources with arbitrary shape and prescribed trajectories 

 

 

■Suitable Material formulations in LS-DYNA 
■ *MAT_CWM (*MAT_270) 
■ *MAT_THERMAL_CWM (*MAT_T07) 
■ *MAT_UHS_STEEL (*MAT_244) 
 

■Summary and Outlook 
 

Agenda 
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■ double ellipsoidal power density distribution proposed in [Goldak2005] 
 
 
 
 
 
 
 
 
 

■ Most widely used for industrial applications 
■ Can be defined in LS-DYNA using keyword *BOUNDARY_THERMAL_WELD 

 
 
 
 
 
 
 
 
 
 

Goldak Double Ellipsoid heat source 
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■ NID:   Node ID giving the location of weld source 
■ NFLAG: Flag controlling motion of source 

    EQ.1: source moves with node 
    EQ.0: fixed in space 

■ N2ID: Second node ID for weld beam direction 
    GT.0: beam is aimed from N2ID to NID 
    EQ.-1: beam aiming direction is (Tx, Ty, Tz) 

*BOUNDARY_THERMAL_WELD 

1 2 3 4 5 6 7 8 

Card 1 PID PTYP NID NFLAG X0 Y0 Z0 N2ID 

Card 2 a b cf cr LCID Q Ff Fr 

Opt. Tx Ty Tz 
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■ Beam motion (e.g. *BOUNDARY_PRESCRIBED_MOTION_RIGID) allows 
defining the translation and rotation of the heat source 
 

■ For previously deformed or curved structures, the  
description of the heat source is NOT straight-forward 
 

■ Movement of the part has to be compensated for 
 
 
 
 
 
 
 
 

Movement of the heat source 1 

[Schill2014] 
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■ Useful keyword: *CONTACT_GUIDED_CABLE 
 

 
■ It forces beams in PID onto the trajectory defined by nodes in NSID 

 

■ Possible solution 
■ Select a trajectory on the weld seam 
■ Define contact between this trajectory and a beam B1 (N1 and N2) 
■ Define a second trajectory and a beam B2 (N3 and N4) following it in a prescribed 

manner 
■ Welding torch aiming directions from N3 to N1 (*BOUNDARY_THERMAL_WELD) 
■ Define local coordinate system N1,N2,N3 
■ Use *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL to move heat source  

Movement of the heat source 2 

[Schill2014] 

1 2 3 4 5 6 7 8 

Card 1 NSID PID CMULT WBLCID CBLCID TBLCID 
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Movement of the heat source - example 

[Schill2014] 

Weld torch 

2nd traj. for coordinate system 

traj. for torch 
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Movement of the heat source - example 
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■ In some cases the standard Goldak heat source is not suitable 
■ *LOAD_HEAT_GENERATION_OPTION might be useful 

 
 
■ LCID accepts a function id, that returns heat(t,x,y,z) 
 

■ *DEFINE_FUNCTION  
■ Define arithmetic expressions involving a combination of independent variables and 

other functions 
■ Function name must be unique (heat for heat generation) 
■ Can be referenced in other functions 
■ C-type or FORTRAN-style code is possible 

 

Heat sources with arbitrary shape 

1 2 3 4 5 6 7 8 

Card 1 SID LCID CMULT WBLCID CBLCID TBLCID 
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■ Example: Define moving (along x) spherical heat source 
*LOAD_HEAT_GENERATION_SET 

      1001      1001       1.0         0         0         0 

*DEFINE_FUNCTION 

      1001  

float heat(float time, float x, float y, float z) 

{   float xl,rl,f; 

    xl=x-xt(time); 

    if (xl**2+y**2+z**2>=1) f=0; 

     else f= sqrt(1- xl**2+y**2+z**2); 

     return f;} 

*DEFINE_FUNCTION   

      4001 

float xt(float time) 

{  float f = 10*time; 

   return f;} 

 

*LOAD_HEAT_GENERATION_OPTION 

x distance from center (reference)  

No heat generation outside sphere 

Spherical heat source 

Motion along x-axis with v=10 DYNAmore GmbH
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■ Example:  
Temperature fields for a Goldak and a double cone-shaped heat source 

*LOAD_HEAT_GENERATION_OPTION 

DYNAmore GmbH



16 

■ Can be modeled with flux boundary condition 
 

■ With *BOUNDARY_FLUX_SEGMENT_SET arbitrarily shaped sources can be 
defined 
 
 
 
 
■ Accepts function ID in LCID, declaration 

float flux(float x,float y,float z,float vx,float vy,float 

vz,float tinf,float time) 

 
■ Application for welding or laser assisted forming processes 
 

Define heat source for 2D 

1 2 3 4 5 6 7 8 

Card 1 SID 

Card 2 LCID MLC1 MLC2 MLC3 MLC4 LOC NHISV 

Card x HISV1 HISV2 HISV3 HISV4 HISV5 HISV6 HISV7 HISV8 
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■ Laser assisted sheet forming: 
■ the laser heats the material and  

softens it for forming 
■ Energy from the laser is modeled  

using a flux boundary condition  

*BOUNDARY_FLUX_SET 

Deformation Temperature DYNAmore GmbH
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■ Realistic description for the heat source applied to the weld seam 
 

■ Weld seams are usually discretised with solid elements in the pre-processing  
■ Before the weld torch has reached the material, filler should not influence the outcome 

■ Very low mechanical stiffness 
■ Very low heat conduction 

■ If affected by the heat, material should respond as the surrounding material 
 

■ Due to the very high temperature, annealing effects have to be considered 
 

■ Material should be able to account for the microstructure of the alloy 
■ Phase changes in heating and cooling 
■ Transformation induced strains 

 
 

Welding simulations – requirements 
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■Modeling Heat Sources in LS-DYNA 
■ The Goldak heat source 
■ Heat sources with arbitrary shape and prescribed trajectories 

 

 

■Suitable Material formulations in LS-DYNA 
■ *MAT_CWM (*MAT_270) 
■ *MAT_THERMAL_CWM (*MAT_T07) 
■ *MAT_UHS_STEEL (*MAT_244) 
 

■Summary and Outlook 
 

Agenda 
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■ Elements are initialy ”Ghost” or ”Silent” until activated at a specific temp. 
■ Low stiffness 
■ Negligible thermal expansion 

 

■ After activation, material with 
■ Temperature dependent mechanical properties 
■ Von-Mises plasticity with mixed isotropic/kinematic hardening 
■ Thermal expansion 

 

■ Anneal at specific temperature 
 

*MAT_CWM / *MAT_270 

activation temperatures annealing 
DYNAmore GmbH
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■ Card1 contains properties for activated material 
■ TASTART and TAEND define range for annealing (linear process) 
■ TLSTART and TLEND define range for activation 
■ EGHOST, PGHOST and AGHOST are properties for ghost material 
■ T2PHASE and T1PHASE define temperature for phase shift 

 
■ Now available for shell and solid elements 

 

*MAT_CWM / *MAT_270 

1 2 3 4 5 6 7 8 

Card 1 MID RO LCEM LCPR LCSY LCHR LCAT BETA 

Card 2 TASTART TAEND TLSTART TLEND EGHOST PGHOST AGHOST 

Opt. T2PHASE T1PHASE   
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■ Material has birth time TISTART and TIEND 
■ Before birth, HDEAD and TDEAD are used 
■ After birth, material is in a “Ghost” state until activated between TLSTART and 

TLEND 
■ All input for activated material is temperature dependent 
■ TGR stands for thermal generation rate 

*MAT_THERMAL_CWM / *MAT_T07 

1 2 3 4 5 6 7 8 

Card 1 TMID TRO TGRLC TGRMULT HDEAD TDEAD 

Card 2 LCHC LCTC TLSTART TLEND TISTART TIEND HGHOST TGHOST 

activation temperatures 
DYNAmore GmbH
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Welding simulation  

Temperature Effective plastic 
strain 

Von Mises stress 

After forming and trimming, but before welding DYNAmore GmbH
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Welding simulation  

Temperature Effective plastic 
strain 

Von Mises stress 

After welding DYNAmore GmbH
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■ Realistic description for the heat source applied to the weld seam 
 

■ Weld seams are usually discretised with solid elements in the pre-processing  
■ Before the weld torch has reached the material, filler should not influence the outcome 

■ Very low mechanical stiffness 
■ Very low heat conduction 

■ If affected by the heat, material should respond as the surrounding material 
 

■ Due to the very high temperature, annealing effects have to be considered 
 

■ Material should be able to account for the microstructure of the alloy 
■ Phase changes in heating and cooling 
■ Transformation induced strains 

 
 

Welding simulations – requirements 
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■ The start temperatures for cooling phase transitions can be 
■ calculated automatically by the material using the chemical composition 
■ Defined manually using the advanced reaction kinetics input (REACT=1) 

 

■ By default, same start temperature is used for heating and cooling 
 

 
 
 

■ Now, advanced reaction kinetics input accepts LCID for  
FS,PS, BS, MS 

■ First ordinate value is start temperature for cooling 
■ Last ordinate defines start temperature for heating 

 
 
 

*MAT_UHS_STEEL / *MAT_244 

1 2 3 4 5 6 7 8 

REACT FS PS BS MS MSIG LCEPS23 LCEPS4 LCEPS5 
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■ Temperature dependent definition for thermal expansion for austenite and the 
hard phases 

■ Dilatometer experiments show transformation induced strains as temperature 
dependent jumps  

■ Added parameter LCTRE in card 4 on position 8 defining temperature 
dependent offset between austenite and martensite dilatometer curve 

*MAT_UHS_STEEL / *MAT_244 

DYNAmore GmbH



28 

■ New features for welding have been implemented 
■ Can be used by setting flag CWM in card 4 parameter 7 to 1 
■ Optional CWM card reads 

 
 
 

■ Ghost material approach as for *MAT_270 
■ Material is inactive at the beginning, but is activated if temperature reaches the 

activation range from TLSTART to TLEND 
■ Properties EGHOST, PGHOST and AGHOST of ghost material should not influence 

the outcome, but should yield suitable mesh movement within the weld seam 

■ Annealing is also considered  
■ Can be combined with *MAT_THERMAL_CWM 

*MAT_UHS_STEEL / *MAT_244 

1 2 3 4 5 6 7 8 

CWM TASTART TAEND TLSTART TLEND EGHOST PGHOST AGHOST 
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*MAT_UHS_STEEL / *MAT_244 

temperature 

displacement 

no
 g

ho
st

in
g 

 

w
ith

 g
ho

st
in

g 
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Example: Round Robin 
■ Geometry: notched block with 2 weld seams 
■ All materials are initialized in ferrite phase 

*MAT_UHS_STEEL / *MAT_244 
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*MAT_UHS_STEEL / *MAT_244 

• Temperature t=28 

block lower weld seam upper weld seam DYNAmore GmbH
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*MAT_UHS_STEEL / *MAT_244 

• Austenite concentration t=28 

block lower weld seam upper weld seam DYNAmore GmbH
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*MAT_UHS_STEEL / *MAT_244 

block lower weld seam upper weld seam 

• Martensite concentration t=28 

DYNAmore GmbH
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■Modeling Heat Sources in LS-DYNA 
■ The Goldak heat source 
■ Heat sources with arbitrary shape and prescribed trajectories 

 

 

■Suitable Material formulations in LS-DYNA 
■ *MAT_CWM (*MAT_270) 
■ *MAT_THERMAL_CWM (*MAT_T07) 
■ *MAT_UHS_STEEL (*MAT_244) 
 

■Summary and Outlook 
 

Agenda 
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■ Realistic description for the heat source applied to the weld seam 
 

■ Weld seams are usually discretised with solid elements in the pre-processing  
■ Before the weld torch has reached the material, filler should not influence the outcome 

■ Very low mechanical stiffness 
■ Very low heat conduction 

■ If affected by the heat, material should respond as the surrounding material 
 

■ Due to the very high temperature, annealing effects have to be considered 
 

■ Material should be able to account for the microstructure of the alloy 
■ Phase changes in heating and cooling 
■ Transformation induced strains 

 
 

Summary 
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■ A generalization of *MAT_244 will be implemented   
■ Suitable for a wider range of materials 
■ More phases can be defined 
■ Multiple phase transformations 

 

■ Special welding contact in currently under development at LSTC 
■ Standard sliding contact at the beginning 
■ Contact switches to a tied formulation after the weld temperature is reached 

 
 

 

Outlook 
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Thank you! 
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