DYNAmore GmbH LS-DYNA

Informationstag: Menschmodelle – Überblick und Erweiterungsmöglichkeiten

Stuttgart, 8. März 2013

DYNAmore - The Company

- Countries and Main Offices
 - Germany headquarters in Stuttgart
 - Sweden headquarters in Linköping
 - Switzerland headquarters in Zurich
- Further Offices
 - Ingolstadt
 - Dresden
 - Langlingen (Wolfsburg)
 - Berlin
 - Gothenburg
- On-site Offices
 - Sindelfingen
 - Untertürkheim
 - Weissach
 - Ingolstadt
 - Gothenburg

Stuttgart [Headquarters]

DYNAmore – The People

- Who we are
 - In total 80 people
 - Civil and mechanical engineers, mathematicians, computer scientists,...
 - The employees are from 13 different countries
 - The percentage of female staff is above 25 %
 - The fluctuation of employees is below 2%
 - The company is financially stable since its foundation

DYNAmore - The Products

Software

- LS-DYNA
- LS-OPT und LS-TASC
- LS-PrePost
- eta/DYNAFORM
- FEMZIP
- Digimat

Models

- FAT/PDB dummy models
- Humanetics dummy models
- THUMS human model
- Arup barrier and impactor models
- Daimler/Porsche impactor models
- LSTC models

DYNAmore - The Services

Software

European master distributor for LSTC (w/o UK and France)

about 10000 maintained LS-DYNA licenses

Engineering

- Benchmarking
- Pilot projects
- On-site engineering
- Consulting
- Development
 - Dummy models
 - Material models
 - Method development
- Training
 - Seminars
 - Conferences
 - Coaching on site

History of LS-DYNA and DYNAmore

- 1976: John Hallquist develops DYNA3D at Livermore Laboratories
- 1988: John Hallquist founds LSTC, DYNA3D becomes LS-DYNA3D
- 1988: Prof. Schweizerhof + co-workers start with crash simulations in Germany
- 2001: DYNAmore is founded
- 2011: DYNAmore acquires ERAB Nordic,
- 2011: DYNAmore assigned as master distributor

Human Models

- Based on Multi-Body Systems
 - Easy to set up
 - Numerically cheap
 - No field functions (stress, strain, etc.)
 - Usually no failure prediction possible

- Based on Finite-Element Systems
 - Difficult to set up
 - Numerically expensive
 - Includes field functions
 - Failure prediction under research

Include Skeletal Muscles

- Possibility to Impose Movement
 - Inverse kinematics
 - motion is captured and prescribed
 - muscle forces are computed as a reaction due to the imposed movement

- Forward kinematics
 - muscle forces are measured and prescribed
 - motion is computed

- Posture and motion prediction
 - forces and motion are unknown
 - control theory used to predict muscle forces
 - motion is computed

[Courtesy Prof. Syn Schmitt]

Overview of Todays Talks

- THUMS and its Current Applications
 - Vorstellung der THUMS Menschmodelle
 - D. Fressmann (DYNAmore)
 - Anwendung des FE-Menschmodells THUMS-D im automobilen Umfeld
 - A. Öztürk (Daimler AG)
 - Passive Muskeleigenschaften für Menschmodelle in der Crashsimulation
 - K. Zhou (LMU München), S. Peldschus (Campus Tuttlingen/ HS Furtwangen)
- Extension Possibilities for Muscle Activation
 - Aktive Muskelansteuerung des THUMS mit dem Co-Simulationstool ICOS
 - T. Steidl (Kompetenzzentrum Das virtuelle Fahrzeug Forschungsges. mbH)
 - Aktive Muskelmodellierung an der Schnittstelle von Mehrkörper- und Kontinuumsmechanik
 - O. Röhrle, S. Schmitt (Exzellenzcluster SimTech, Universität Stuttgart)

