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Agenda

 Thermal and electrical fields in a battery

e Deriving Reduced Order Models (ROM) from 3D field simulation
* Model based system engineering



What is an Electro-Thermal Coupling (ETC) Model?

An electro-thermal coupled (ETC) battery model is a two-way coupled electric-thermal model to simulate the
coupled electrical and thermal behavior of a battery module or pack.

e CFD based ETC uses CFD as the thermal model.

e System ETC uses thermal network or a ROM as the thermal model.

Many companies
can do one of the
two. And Ansys
can perform both.
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Electrical Modeling - Equivalent Circuit Model (ECM)

e Current Voltage dynamics of a cell or module can be modeled using Equivalent Circuit Model (ECM).
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While many companies can create ECMs, Ansys accept customer ECMs through FMUs.

Y \NnSyYS



Thermal Model for CFD Based ETC — Full 3D CFD
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Fast Pre-Processing (Meshing Template)

Battery Model in Fluent

Both meshing and solver use Fluent -> Streamlined workflow Current Density Contour
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Agenda

 Thermal fields in a battery

e Deriving Reduced Order Models (ROM) from 3D field simulation
* Model based system engineering



Thermal Model for System ETC - Reduced Order Model (ROM)

* Thermal Network approach — Need extensive tuning and calibration of thermal resistances and capacitances
« ROMs — More generic and easier to generate
 ROMs are created using training data from 3D CFD based ETC model
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Fluent Twin Builder

ROMs are as accurate as CFD and 300x faster than a thermal network for a pack, reported by our customers.
ROMs are created from 3D CFD based ETC with only minutes of additional man hr.
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Coupling of ECM and ROM in Twin Builder
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ROMs can be exported into
any third-party system tool
accepting FMUs, for
instance GT suite and
Simulink. Using ROM as a
plant model for BMS is one
main application.

Battery Management System Validation Using Real-time Plant Model

Customer Goal

Accelarate BMS control development & validation using real-
time, electrically & thermally accurate battery plant model

*  Generate Pack thermal
Reduced Order Model
{ROM) based on high

simulation fidelity 3D CFD results

= Battery management

e
generation for system system design

Maximize system performances and ensure safety

Solution s I : —
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Reduced Order Model (Fluent+HPC) i bd
Real-time Models: electrical ECM & thermal ROM (Twin o 1 | — W T
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System-level Simulation: FMU export to integrate with Pack CFD Module/Pack Thermal ROM BMS Control
lectric drive control & system models for early detection of
integration issues
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Y. Liu, Xi Hu, W. Zhao, S. Zhang, “An Electro-thermal Coupled Battery Model for a 48V Li-on Battery Pack Using Reduced Order Thermal Model”, battery conference 2021.
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Validation of the Two ETC Models

14 cells in series

Cooling plate

Cooling plate Coolant Outlet
Tabs/Connectors

Coolant Inlet

* Model used in this study consists of 14S1P configuration with tabs and busbars
* Water flows through cooling plate attached to the module
e Total mesh size ~ 6 Million cells
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Results from 3D CFD Based ETC Model
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* CFD simulation for 1000s of physical time took approx. 1.5 days on 64 cores
* CFD generates a lot of high-fidelity data in 3D
* However, such high-fidelity data might not be required in system level simulations or while designing BMS
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Comparison of Two ETC Model Results — Electrical Quantities

Source Voltage vs Time Celll1 SOC vs Time
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» Difference in source voltage by the two ETC models is within 0.18%

» Difference in SoC predicted by the two ETC models is within 0.01%
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Comparison of Two ETC Model Results — Thermal Quantities
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» Difference in temperature predicted by the two ETC models is within 1.5%
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Performance Comparison

3D CFD Based ETC System ETC
# of cores 64 1
Total Time 36 hours < 10 seconds
Available Results 3D as well as 2D data available Average data at pre-specified locations



3D Matrix

Steady WB Response Surface
optiSLang MOP
Transient LTI-ROM Dyna-ROM
LPV-ROM

Steady Static Rom Builder
(WB ROM-Builder)
Transient SVD-ROM Dyna-ROM for field data
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Summary

* Fluent CHT simulations are more accurate than other vendors — reported by
customers.

* With a battery 3d CFD based ETC model in Fluent, it takes only a few minutes of man
hour plus required CPU time to create the thermal ROM.

* The ROM is many orders of magnitude faster than the CFD model.
* The ROM is as accurate as the 3d CFD.

* For a pack-level simulation, the Ansys ROMs are about 300x faster than a thermal
network approach used by other vendors - reported by our customers.

 ROMs are used widely by our customers for applications that require real-time, for
instance, BMS design.

X. Hu, A. Kshatriya, X. Wang, B. Ahrenholz, and S. Folio, “A Thermal Electric Two-Way Coupled Battery Pack Model for an All Electric VW Motorsport Racer” SAE paper 2019-01-0593
Y. Liu, Xi Hu, W. Zhao, S. Zhang, “An Electro-thermal Coupled Battery Model for a 48V Li-on Battery Pack Using Reduced Order Thermal Model”, battery conference 2021.
D. Guan, “BESS System Modeling Using Ansys”, Ansys webinar 2021.
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 Thermal fields in a battery

e Deriving Reduced Order Models (ROM) from 3D field simulation
* Model based system engineering



Ansys Solution on BMS

17

Fault Tolerant
Study (ASIL
Verification)
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BMS V&V

BMS V&V
(Test)

Requirement
Engineering

Architecture &
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Development
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Safety
(1S026262)
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WHY? BMS Integration with Battery Pack

¢ Virtual validation & verification of BMS code BMS
BMS integrated with Battery pack C: @
Integration

Breaking down silos by integréting the Battery pack
with BMS

Ensure that BMS Code behaves as expected at system |
level along with Battery Pack Reqtirements _\ L |

3 3 y : Powertrain\‘*-\ & i ,,,."Slqﬂ:'enario
& . 3 F S - “g‘_
Optimize the Battery Pack cooling early in the product L A __9_"_7,,,-4 | "L-

develop’ment stage with BMS i_ntegration ﬁg y | ,,—JEF

Compress the development cycle by early MilL and A\ N
ensure SiL/HilL testing " Battery Pack Devalopment

."- — A BMS ECU
- v - p »

Integrating the High-Fidelity 3D Physics with BMS to simulate the entire Battery system

\nsys
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HOW?: Verifying BMS Controls with virtual Battery pack model

SCADE Suite

FauteTolerant ff gqurement BMS Control Development
v ucl (A Engineering
erification)

Architecture &
Control
Development

Battery Pack &
BMS V&V

ANIARARNARY

Functional
BMS V&V Safety

(Test) (15026262)

Ansys Fluent

Battery Pack Thermal Mana

Twin Builder

Verification of BMS Controls with Battery Pack

Battery Pack

= = P T =
o 0 ] ]
=t — | | - — Py

wwwww

Thermal ROM
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» Integrating the BMS Model with
Battery in TB environment.

» Understand how BMS Controls the
battery pack behavior over a drive
cycle.

» Understand the Battery thermal
management from the CFD point of
view.
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M| File Edit View Project Draw Schematic Twin Builder Tools Window Help
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Powertrain, Electric | Battery

Battery Management System Development

Customer Goal

Develop a safety-driven control center that monitors the
battery state (SoC, SoH), optimize the performances and
ensure safety

Comply with Safety Standards e.g. 1S026262 (up-to ASIL D)

Solution
Model Based System Safety Analyses (FuSa)

Model Based software development and simulation
including automatic code generation (ACG)

Model Simulation for early detection of design issues

Benefits

Compliance with Automotive Standards: ISO 26262 and
AUTOSAR

Productivity: 50% Saving vs. Manual Coding - Elimination of
debug, review and V&V activities

2x Increase in time to market: Early detection of flaws,
automated production of readable, portable,

high performance and high-quality codes, and improved
long-term maintainability
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Model Based Safety-driven workflow (ISO 26262 compliant)

Model-Based System

/ Model-Based Systems Engineering Safety-Analysis System Simulation & Digital Twins \
L
. I.T‘\. — e
[ | ]
e | ] _]
— = — i
@ SCADE - @ medini Analyze
* Architect _ L T
1 — System Architecture

N

System/Software Architecture

-

@ SCADE
N7 Suite

@ SCADE
N7 Display §

\ Model-Based Software Engineering

\ 3D Physics Simulation /

“Utilizing SCADE increased our development automation by 15%, highly reliable
code with zero manual review, permitting us to swiftly innovate new ECU
technology and accelerate its path to market faster than ever”

-Yuji Kawakami



Functional Design /\NsSys Sirulation Window - ANSYS
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Key Features:
* 32 Cell Monitor Units (CMU)
* 12 Cells per CMU (=384 cells)
* Cell Balancing

_ e * Charging Process
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Workflow: Multi Core

|dentify functions that
shall run in parallel

Functional Design

Target Compiler
TASKING

Create AUTOSAR : : o
Software Component Mapping functions to Cores ¢/ *h files
Generate code
ARXML files / o sermtion
EB tresos Studio *.c/ *.h files

AUTOSAR Basic
Software Configuration

N

€13 Elektrobit Generate code

/

Flash to Target
nfineon AURIX™ TC397
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Mapping Functions to Cores

* The dependancy graph is
automatically generated
(MultiCoreUl Tool)

e WCETs needed for
scheduling are

calculated by
aiT (Absint)

e Multi-Core Scheduling for BMS (2.05ms)

TASK_CVOL_Chun
TASK_CVOL_Chunl
TASK_CVOL_Chunl

3 TASK_CVOL_Chunl

Process duration: 2045128 Number of allocated methods: 20/20 Average Usage: 34,06%
k1 TASK_CVOL_2 87.9%
k 2 TASK_ALRM_1 85.2%
k_3 TASK_CONT 82.3%
k_4 TASK_CEBA 80.9%



Comparison Scheduling (Host) vs. Reality (Target)

Process duration: 2045128 Number of allocated methods: 20/20 Avarage Usage: 84,06%
TASK_CVOL_Chunk_1 TASK, CVOL_2 87.9%
TASK_CVOL_Chunk_2 TASK_ALRM_1 85.2%
2 TASK_CVOL_Chunk_3 TASK_CONT 82.3%
3 TASK_CVOL_Chunk_4 TASK_CEBA 20.9%

Process durati»n: 1900000 (1.9ms)

1 _S00V/ 2 S00V/ = S500VZ/ |1 S.00V/ g7ffox 2 Joog:is 2 Auto |
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Results — Single-Core vs. Multi-Core

 Single-Core (4.64ms) e Multi-Core (1.9ms)

878.0s

All 384 cells are active
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