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v [ Introduction

University

On 11 March 2011, a massive earthquake of Richter scale 9.0
followed by a tsunami 1 h later with waves of 10 to 14 m struck
the Fukushima Daiichi (FD) nuclear complex operated by Tokyo
Electric Power Company (TEPCO).

CFD is used to determine the evolution the hydrogen distribution
within the containment for a relatively large number of postulated
accident scenarios

After a brief summary of project organisation and aims, this
presentation indicates how to calculate the hydrogen distribution
in the containment using CFD Code?, to provide evidence on
hydrogen behaviour and management in water-cooled rectors
through a severe accident 2, and to recommend mitigation
strategies to prevent future accidents 3.
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=~ Problem to be simulated
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. « Origin Zr + 2H20 == 7rO2 + 2H2 + heat

e Heat generated heats up the core and
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15 Lo N &
Containment speay 45

Stwnum:o'rnm*m“m
) * «Consequen ) ) .
ce e H2 may burn in RPV, and in the containment
e after RPV failure
e e H2 reduces the depressurization of
- containment by spraying
«Research e Control rods, Cladding, fuel melting progress
—— e Hydrogen generation

Evacuation of
energy from the

s PR R e Hydrogen distribution in the containment
e Evaluation of hydrogen risk



Modeling of the Plant, Setup & simulation of hydrogen distribution

The total number of grids is 2700,000 Step 2: Meshing _ ) Step 4: post processing
and the grids are generated using CFD Step 3: simulation
codes. (Hexagonal Mesh) setting

Step1l:
Geometry Simplification.
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parameters value

Reactor full power/ MW 3040

Hot leg temperature in steady state/ K 603.23

Cold leg temperature in steady state/ K 566.06

Core temperature in steady state/ K 605.16

RPV outlet mass flow rate/ kg * 5™ 1.47E4

RCS pressure in steady state/MPa 15122

SG secondary side pressure in steady state /MPa 6.77

Containment pressure in steady state /MPa 0.11

Minimum thickness of cladding/m 0.0001 -

Fail temperature of penetration/K 1273.15 . |i k- bl
Fail pressure of relief tank/MPa =P+ 0.8 N L
Low fail pressure of containment/MPa 032

High fail pressure of containment /MPa 1.027

Critical mole fraction for blasting of H» 0.1

The failure locations are assumed _ _ _
on the pressurized tube Passive autocatalytic recombiners

surface (PARS)
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Results

~ Unrversity

Hydrogen Behavior was analyzed with CFD code to check I
the concentration in doom and local compartments in

transients.
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v [ Accident Assumpticn Calculation results from MAAP
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Results

Techniques for Mitigating and

Under severe accident conditions, the total amount of Reducing the Chance of a Serious
hydrogen generated in the core depends on the specific .
accident process and the reactor structure. In this research, * Accident

about 1600kg (without PARSs), and 440kg (with PARS) of * lgniters Operation
i i i * Reduction of Oxygen Mass
hydrogen were generated in the containment. However, in the Monitori .
. g . onitoring Devices
containment accident,
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Conclusion

A simulation lasted for 15 h to observe the process changes of a hydrogen explosion in the
containment when an SBLOCA occurred.

The risk of hydrogen explosion largely depends on the combination of air, hydrogen, and
the presence of steam in the containment which acts as an insulator to prevent the contact
between hydrogen and air.

The first risk of hydrogen explosion throughout the time may happen at stage 3 (7000—
14,000 s). There is a possibility of a localized hydrogen explosion that could occur among
the compartments in the lower part of the containment.

A massive scale hydrogen explosion could bring damage to the containment structure.
Better knowledge of the potential risk locations can facilitate the PAR installation and
promote a more effective countermeasure against hydrogen explosion.
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