Multi-physical characterization and simulation of battery cells for predicting abuse scenarios

Martin Schwab

Battery Day 2022

excellence in ...
plastics simulation
testing equipment
lightweight products

Testing and Identification

Outline

- 1. Generation of abuse simulation models of a single battery cell using LS Dyna
- 2. Abuse testing and simulation of a single battery cell
- 3. Application of a single cell model within the simulation of multi-cell mockups
- 4. Conclusion and outlook

Generation of abuse simulation models of a single battery cell using LS Dyna

Multiphysics of battery cells

Modeling approaches in LS DYNA

	Solid layer model	Tshell model	Batmac model
4CI			
Keyword	*EM_RANDLES_SOLID	*EM_RANDLES_TSHELL	*EM_RANDLES_BATMAC
Characteristics	+ Analysis of the different layers is possible- Computational effort	 + Benefical modeling of thin cells - Behavior of the layers can not be analyzed in detail 	 + Modeling with respect to mechanical and thermal problem - Behavior of the layers can not be analyzed

Electrical modelling and characterization

electrical behavior is covered by a circuit model

parameter as well as the OCV-SOC curve are identified from the 4a HPPC test

Characteristic of the abuse of a battery cell

Course of voltage and temperature because of overheating

- Characteristic points and effects:
 - Internal short circuit: drop of the voltage
 - **Exothermic reaction**: spontaneous increase of the temperature

Abuse simulation of a single cell

Modeling of the internal short circuit and the exothermal reaction

Initiation criterion:

$$\Phi_S\left(T, \text{SOC}, \underline{\underline{\varepsilon}}\right) \ge 1$$

Short resistance:

$$R = \text{const.}$$

Internal short circuit

Initiation criterion:

$$\Phi_E(T) \ge 1$$

Additional heat source:

Exothermal reaction

Abuse testing and simulation of a single battery cell

- Overheating of a fully charged 18650 battery cell (Panasonic NCR18650B) at the bottom
- Measurement of the temperature at the cell as well as in the chamber with 6 thermocouples
- Measurement of the voltage

18650 battery cell

fully charged overheating at bottom

Experimental results

I N

Comparison of experimental and simulative data

Application of a single cell model within the simulation of multi-cell mockups

Experimental investigation

- Thermal runaway of the center cell induced by heating with a heating wire
- Temperature and voltage measurement at each cell
- Video recording with high-speed camera

Experimental investigation

Mock-up with seven 18650 battery cells

equal distances

Experimental investigation

Experimental investigation – behavior of all cells

^{*}Thermocouple at cell 6 was broken within the test

Experimental investigation – behavior of all cells

^{*}Thermocouple at cell 6 was broken within the test

Experimental investigation – behavior of cell 1 and 2

Mockup with equal distances Simulation results

200

t in s

400

1500

1000

500

T in K

Experimental investigation

- Thermal runaway of the center cell induced by heating with a heating wire
- Temperature and voltage measurement at each cell
- Video recording with high-speed camera

Experimental investigation

Mock-up with seven 18650 battery cells

different distances

Experimental investigation – behavior of all cells

Experimental investigation – behavior of all cells

Mockup with different distances Simulation results

simulation experiment

— cell 1

— cell 2

<u>-</u> cell 4

<u>cell</u> 5

- cell 6

- cell 7

Conclusion and outlook

Conclusion

Outlook

- Development of test setups for further characterizations of battery cells especially within the thermal runaway
- Automatic identification of the parameters required for the resulting FE model
- Optimization of battery packs addressing the thermal propagation behavior

Conclusion

Outlook

- Development of test setups for further characterizations of battery cells especially within the thermal runaway
- Automatic identification of the parameters required for the resulting FE model
- Optimization of battery packs addressing the thermal propagation behavior

Improve your developments with our expertise in testing and simulation!

Martin Schwab

martin.schwab@4a.at +43 (664) 80106 640

