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Battery crash simulation 

(general) 

 Car crash 
 

=>  Battery crush 
=>  local internal short 

=>  large localized current densities 
=>  Joule heating  

=>  temperature increase  
=>  thermal runaway  

=>  fire, explosion 

• Mechanical 
• EM 
• Thermal 

• CPM 



Distributed Equivalent Circuit  

(1st Order Randle) 
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• Current collectors transport 

electrons to/from tabs; modeled 

by resistive elements 

• Jelly roll (anode – separator – 

cathode) transports Li+ ions; 

modeled with Randle circuit 
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r0: Ohmic & kinetic 

r10 & c10: Diffusion 

u: Equilibrium voltage (OCV) 

rm: Current collectors 



Standard EM resistive solver 
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•  ϕ : potential 

• E = - grad(ϕ) : electric field 

• V = ϕ2 – ϕ1 : voltage 

• J = σ E : current density (σ = electric conductivity) 

• div (J) = 0 => Δ ϕ = 0  + boundary conditions 
 

(Δ ϕ)1 current flowing out at N1 

- (Δ ϕ)2 current flowing out at N2 

V= ϕ2 – ϕ1 : voltage between nodes 1 and 2 
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u 
r0 i 

Vc 

Introduction of randle circuits 

in resistive solver 

ϕ2 – ϕ1 = u - r0*I – Vc 

r0*i + ϕ2 – ϕ1  =  u - Vc  

i + (ϕ2 – ϕ1) / r0=  (u - Vc) / r0 

FEM solve: 

(S0 +  D) * ϕ = b 

Where  

• S0 is the Laplacian operator (nds x nds) 

• D has  
• 1/r0 at (N1,N1) and (N2,N2)  

• -1/r0 at (N1,N2) and (N2,N1)  

• 0 elsewhere 

• b has 

• 1/r0(u-vc) at N1 

• -1/r0(u-vc) at N2 

• 0 elsewhere 

ϕ2 ϕ1 Actualization of randle circuits: 

i= (S0 * ϕ)(N1) 

Vc(t+dt)=Vc(t)+dt*(i/c0-Vc(t)/r10/c10) 

soc(t+dt)=soc(t)-dt*i*cQ/Q 

u=u(soc) 

R 

Randle circuit 
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Isopotentials 
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short resistance voltage current 

Isopotentials can be defined and connected: 

• The connectors do not need to be meshed. 

• Enables alignment of cell simulations with experimental conditions 

(low rate cycling, HPPC, continuous discharge, …). 



Randle circuits  

energy balance 
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Eavailable = ∑randle ∫(u(t)*i(t) dt 

             = ∑ randle ∫  u dq 

             = ∑ randle Q/cQ ∫ u(SOC) d SOC 

 

Edelivered by u       = ∑ randle ∫  u*i dt 
 

Edelivered to load     = ∑ randle ∫  uload*iload dt 

 

Ejoule heating in r0     = ∑ randle ∫ r0*i
2 dt 

 
Ec10= ∑ randle 1/2 C10 * Vc

2 

 

The different parts of the energy are tracked down 

Typical discharge of unit cell in a resistance 



EM/thermal connection 
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Cu collector :  

EM+Thermal  

Anode :  

Thermal  

Separator:  

Thermal  

cathode :  

Thermal  

Al collector :  

EM+Thermal  

Randle circuit 

r0 * i
2  added to thermal 

ITdU/dT added to thermal  

T from thermal for  

r0, r10, c10 vs T 

Allow correct 

material mass,  

heat capacity and 

thermal conductivity 
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Contact for  

Internal Short Models 
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R 

R 

R 

R 

R 

R 

R 

Replace randle circuit by resistance rs 

Rs * i 
2 added to thermal 

Experiment + simulation 

(voltage, current, temperature)  

should give good models 

rs 

rs 



Scalar potential 

Randle SOC Randle r0 

Current density 

Randle circuits in LS-PREPOST 



Contact illustration (1)  
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• Mechanical models for cells with very thin layers of materials of 

very different stiffnesses are still under investigation. 

• In the meanwhile, in order to avoid the dificulties of the small 

thicknesses, model where the thickness was * 100, as proof of 

principle 
• Rod crushes cell with 22 unit cells 



Contact illustration (2) 
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Voltage vs time 



Contact illustration (3) 
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Current density Temperature 
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