WorldSID 50th The Next Generation Side Impact Dummy

Authors:

Bhavik Shah, FTSS Yi Liu, FTSS

Correspondence:

Bhavik Shah First Technology Safety Systems

> Tel: 024 76 474154 Email: bshah@ftss.com

Outline

- Introduction
- WorldSID 50th Key Design Features
- Side Impact Biofidelity
- Finite Element Model Development
 - Materials Development
 - Component validation
 - Full Dummy Pendulum verification
 - Full Dummy Sled test verification
- Comparison with ES-2re
 - Geometry
 - Lateral loading
- Summary and Conclusions

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

Introduction

- Side impact collisions account for almost 43% of all vehicle occupant deaths in Europe.
- Despite an increase in regulation/rating programs and the introduction of innovative active and passive vehicle restraint systems, there is no evidence of a reduction in car crash deaths.
- Further research is required into side impact configurations and ATD's to develop a useful specification for inclusion into regulation.
- Government, industry and research have been working together under the WorldSID Task Group and IHRA (ISO TC22/SC12/WG5), focused on delivering a highly biofidelic side impact dummy since 1997, the WorldSID 50th ATD.
- The WorldSID 50th prototype dummy has been undergoing evaluated in North America, Europe and Asia since July 2003.
- A production version of the dummy was released in March 2004.

Page 3

Page 2

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

WorldSID 50th Key Design Features

Page 4

WorldSID 50th Key Design Features

Upper torso ribs

- Outer band Nitinol
- Inner band Nitinol with rib damping material
- Oblique loading considered
- FEA used for rib development

Nitinol

- Nickel Titanium shape memory alloy
- Super-elastic
- Transformation change
 Austenite to Martensite
- Capable of 6-8% strain

Page 5

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

First Technology

Page 6

Side Impact Biofidelity Comparison

nacceptable	margina	l fa	ir (good	<i>excellent</i>	
	2.0	4.4	6.5	8.6	10	
Body Region	SID	ES-2	ES-2re	WorldSID	2	
Head	0	5	5	10		
Neck	2.5	4.4	4.2	5.6		
Shoulder	0	5.3	4.5	7.1		
Thorax	3.1	5.8	4.0	8.4		
Abdomen	4.4	2.7	4.1	7.8		
Pelvis	2.5	5.2	3.2	6.1		
Overall	2.3	4.7	4.2	7.6	GO"GO	

Published at UN / WP29 WorldSID Debut, Geneva on June 22, 2004 Courtesy of www.worldsid.org

Page 7

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

Finite Element Model Development

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

• Unique Materials

- Nitinol (Nickel Titanium super-elastic alloy)
 Hyperlast Polyurethane
 - Elastomer
- Material modelling technology needed to be developed

Page 8

*MAT_OGDEN_RUBBER Material Characterisation

Ogden rubber material characteristic is implemented in LS-Dyna as:

$$\lambda_2 = \lambda_3 = \lambda_1^{-1/2}, \sigma_1 = \frac{1}{\lambda_2 \lambda_3} \frac{\partial W}{\partial \lambda_1} = \sum_{i=1}^n \mu_i (\lambda_1^{\alpha_i} - \lambda_1^{-\alpha_i/2})$$

Where λ_i is the stretch and μ_i and α_i are material constants such that

The material constants μ_i and λ_i can be obtained by fitting a curve to the above equation and applying the compression data from the hyperlast test.

н. —	0.001	00710	-0.001
a.	13	4.85	-2

For the strain rate properties, the Maxwell constants G_i and β_i can be obtained by fitting the stress-relaxation test data to the equation below:

	R				
G(t) =	∑Gŗe⁻	six te	rms from	the P	rony series
	<i>i</i> =1				

Maxwell material constants developed for Hyperlast are:

β	0.00164	0.04499	0.8544	9.9921	100.0	1000.0	7
G	0.00810	0.009%	0.0144	0.0.183	0.2450	-0.5865	
		* 5				1	– First Technology

Page 10

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

WorldSID 50th Arm Drop Validation

A component drop test was used to validate the material properties derived from the material tests. The impactor is positioned at centre of the arm. Tests were carried out at 4.4 m/s and 6.3 m/s.

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

Page 11

WorldSID 50th Arm Drop Correlation

Page 12

WorldSID 50th Rib Material Development

- Development of the rib material using drop tower type single rib tests.
- Impact speeds: 4, 5, and 6 m/s and the shoulder at a further 7 m/s.
- Uses MAT_24, *MAT_PLASTIC_KINEMATIC for the time being
- LSTC supporting FTSS with development of MAT_30, *MAT_SHAPE_MEMORY for shell elements in next release of LS-Dyna

Model – initial set-up

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

Model – maximum rib deflection at 15ms

Page 13

4b - 57

WorldSID 50th Rib Material Development

WorldSID-50th Model Development

WorldSID 50th Compared to ES-2re

- ES-2re (RED) and W50 (BLUE) overlaid with the same H-point and back angle
- Key differences:
 - Seating height
 - Arm position
 - Thorax rib orientation

Summary and Conclusions

- WorldSID 50th has the highest ISO TR9790 biofidelity rating of any side impact ATD
- The injury criteria for the WorldSID 50th is yet to be developed through ISO TC22/SC12WG5
- Could have a large influence on vehicle design compared to existing ATD's due to the improved biofidelity and ability to capture oblique loading conditions
 - A comparison in the WSU sled test configuration shows the WorldSID 50th reports about twice as much thorax rib deflection compared to ES-2re
 - The WorldSID 50th captures the shoulder load path via rib
 - Arm position differences could results in differing kinematics
- FTSS have developed and released a validated finite element model of the WorldSID 50th

Page 19

5th European LS-Dyna Users' Conference, B'ham, 25-26 May 2005

