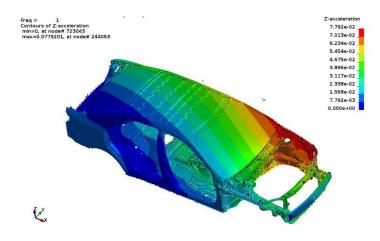
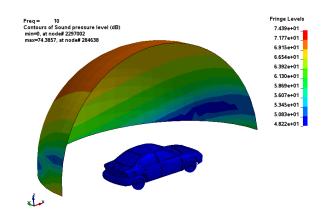
Recent updates in LS-DYNA NVH solvers

Yun Huang, Tom Littlewood, Zhe Cui, Ushnish Basu

Ansys

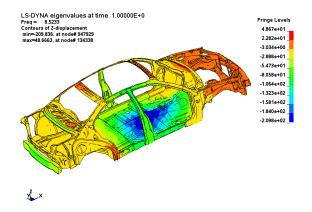

North American LS-DYNA User Forum 2023


November 15-16, 2023

Outline

- Overview of the NVH solvers in LS-DYNA
- Recent updates
 - FRF
 - SSD
 - Random vibration
 - Response spectrum analysis
 - Fluid added mass
 - Acoustic analysis by spectral element method
 - Acoustic analysis by boundary element method
 - d3max
- Conclusion

Overview of the NVH solvers in LS-DYNA

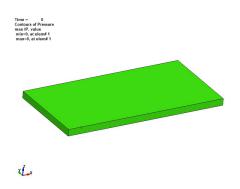


NVH solvers in LS-DYNA

Eigensolvers

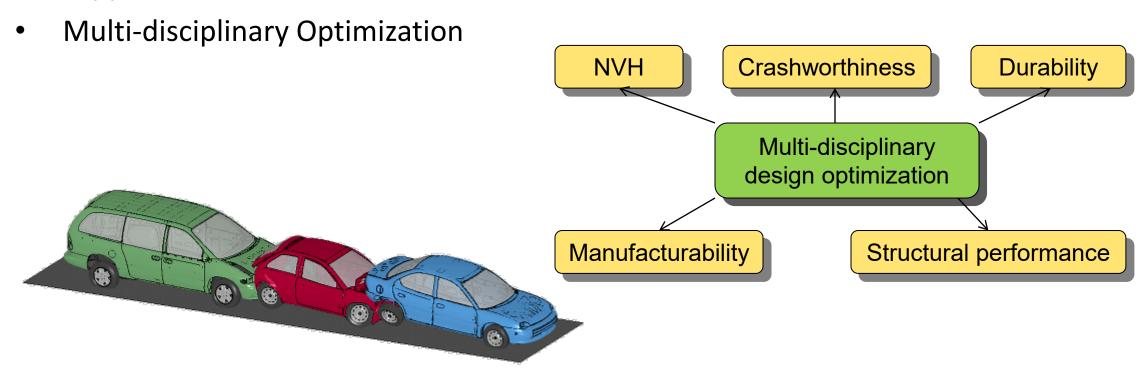
(Roger Grimes, Francois-Henry Rouet)

- Lanczos
- MCMS
- LOBPCG
- Fast Lanczos
- Intermittent eigenvalue
- Pre-stressed eigenvalue

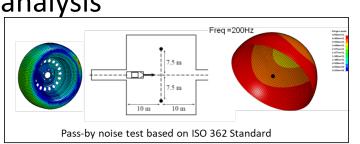

Vibration solvers

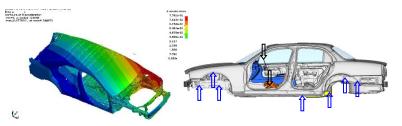
- FRF
- SSD
- Random Vibration
- Response Spectrum Analysis
- DDAM

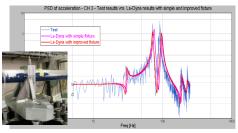
Acoustic solvers


- Transient acoustics (FEM)
- Frequency domain BEM
- Frequency domain FEM
- Acoustic eigenvalue analysis
- Spectral element method
- Modal acoustics
- Statistical Energy Analysis
- Perfectly Matched Layer

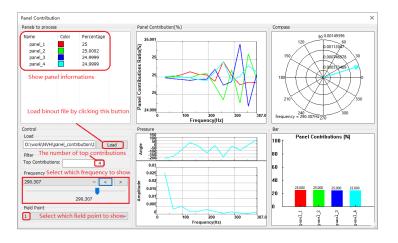
Motivation

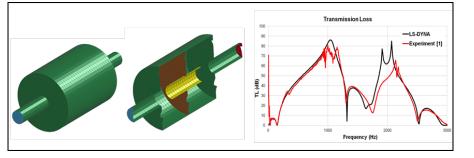

- Demand on NVH (Noise, Vibration and Harshness) analysis from auto customers
- Certain features (material models, connections, etc.) in LS-DYNA models are not supported in other codes

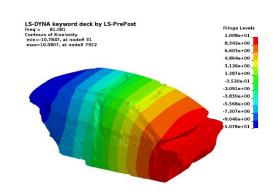


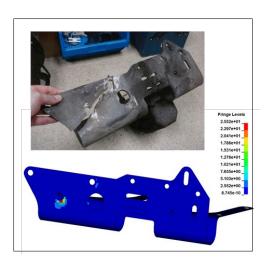


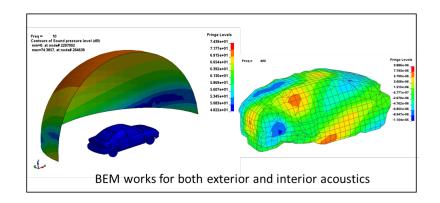
Capabilities

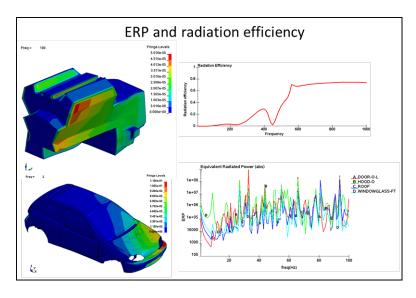

- Full body, trimmed body, BIW global modes (torsion & bending), dynamic stiffness, equivalent static stiffness, effective mass, etc.
- Shaker table testing simulation
 - Harmonic vibration (sine sweep)
 - Random vibration
- Vibration analysis with pre-stress
- Acoustic panel contribution analysis
- Muffler transmission loss analysis
- Vehicle pass-by noise



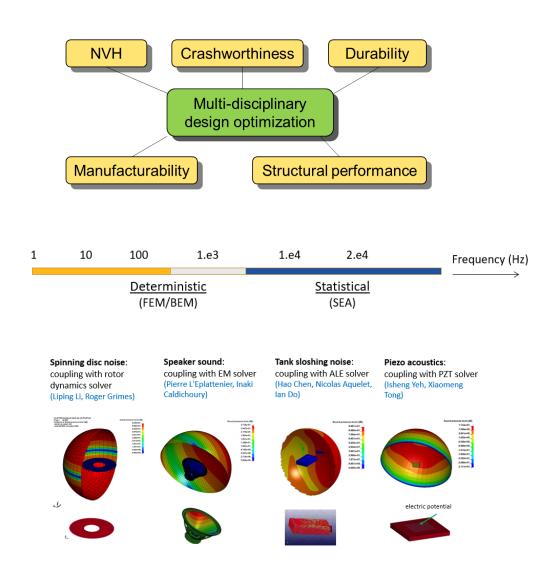







Capabilities

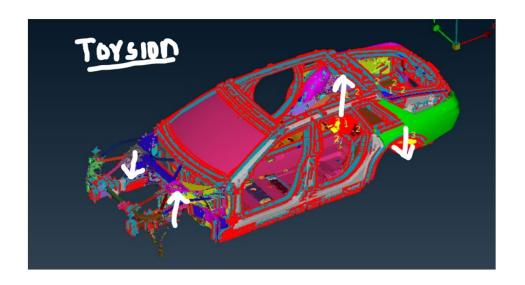
- Acoustic eigenmodes (cabin)
- Vehicle interior and exterior noise
- Acoustic transfer vectors
- Equivalent radiated power, radiation efficiency
- Vibro-acoustic analysis
- Vibro-fatigue analysis
- SMP and MPP versions



Features

- A common model approach
 - based on LS-DYNA crash analysis model
 - save model conversion / translation
 - facilitate multidisciplinary design optimization
- A complete suite of acoustic analysis methods (FEM, BEM, SEA, SEM, ERP, etc.)
 - From time domain to frequency domain
 - From low frequency to high frequency
 - From interior to exterior
 - From near field to far field
- Seamless coupling / integration with other Multiphysics solvers in LS-DYNA

Recent updates


- FRF
- / SSD
- Random vibration
- Response spectrum Analysis
- Fluid added mass
- Acoustic analysis by spectral element method
- Acoustic analysis by boundary element method
- d3max

FRF: overview of updates

- FRF analysis with IGA model (with Lam Nguyen)
- Added Torsion load

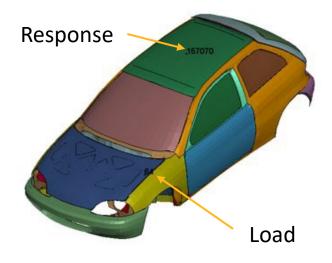
Card 1.a	N1	N1TYP	DOF1	VAD1	VID	FNMAX	MDMIN	MDMAX
Card 1.b	N1′	N1TYP'						
Card 2	DAMP	LCDAM	LCTYP	DMPMAS	DMPSTF			
Card 3	N2	N2TYP	DOF2	VAD2	RELATV			
Card 4	FMIN	FMAX	NFREQ	FSPACE	LCFREQ	RESTRT	OUTPUT	

FRF: multiple load cases in one keyword

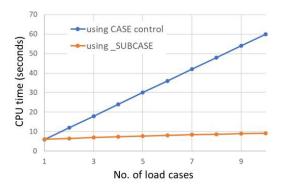
New approach

	DOMAIN FRF SU	JBCASE		
<u></u>	\supset			0
0.001	5	1	0.000	0.000
1.000000	400.00000	400	Θ	0
case1				
131	0	1	3	0
1	1	3	1	
case2				
132	0	3	3	0
1	1	3	2	
case3				
133	0	3	3	0
1	1	2	3	
case4				
134	0	3	3	0
1	1	2	3	
case5				
135	0	3	3	0
1	1	2	3	

Benefits


- Save time for keyword input
- Save time for MPP decomposition
- Save time in reading eigenmodes

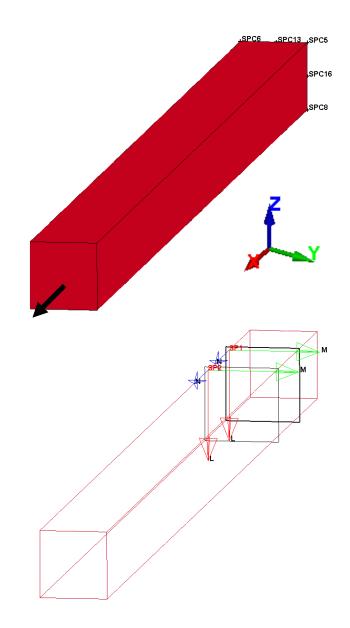
Results


- Subcase*.frf_amplitude
- Subcase*.frf_angle

Old approach

N FRF			
0	1	3	0
5	1	0.000	0.000
1	3	1	
0000	400	0	0
N FRF			
0	3	3	Θ
5	1	0.000	0.000
1	3	1	
0000	400	0	0
N FRF			
0	3	3	0
5	1	0.000	0.000
1	3	1	
0000	400	0	0
N FRF			
0	3	3	0
5	1	0.000	0.000
1	3	1	
0000	400	0	0
N FRF			
0	3	3	0
5	1	0.000	0.000
1	3	1	
0000	400	0	0
			_
	0 5 1 00000 N_FRF 0 5 1 000000 N_FRF 0 5 1 00000	0 1 5 1 1 3 0000 400 N_FRF 0 3 5 1 1 3 0000 400 N_FRF 0 3 5 1 1 3 0000 400 N_FRF 0 3 5 1 1 3 0000 400 N_FRF 0 3 5 1 1 3 0000 400 N_FRF 0 3 5 1 1 3 0000 400 N_FRF 0 3 5 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	0 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 0.000 1 1 3 1 1 0.000 1 1 3 1 0.000 1 1 3 1 1 0.000 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU time for multiple load cases

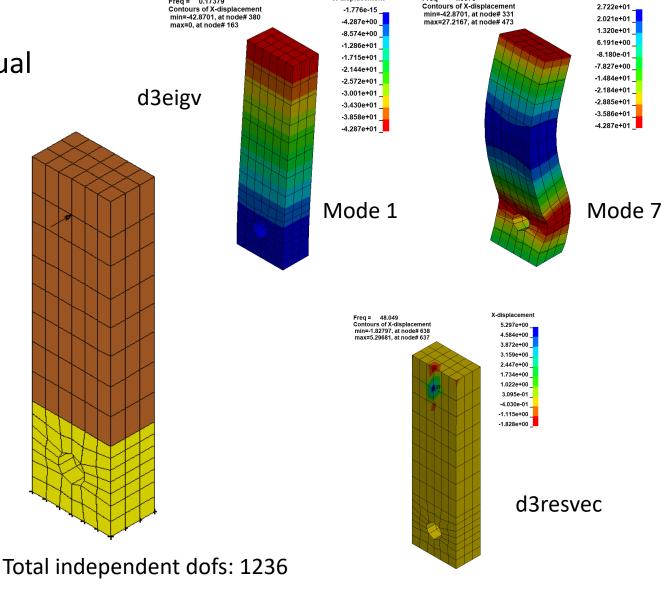

SSD: SECFORC_SSD

Output from SSD

- d3ssd
- nodout_ssd
- elout_ssd
- nodfor_ssd
- secforc_ssd

*DA	TABASE FRI	EQUENCY_AS(II SECFOR	C SSD			
\$#	fmin	· fmax	_ nfreq	fspace	1cfreq		
	1000.	2000.	1001				
*DA	TABASE_CR	OSS_SECTION	_PLANE_ID				
	100						
\$#	psid	xct	yct	zct	xch	ych	zch
	0	10.00	0.000	5.000	100.00	0.000	5.00
\$#	xhev	yhev	zhev	lenl	lenm	id	itype
	10.00	0.00	0.00	0.000	0.000		
*DA	TABASE_CR	OSS_SECTION	_PLANE_ID				
	200	_					
\$#	psid	xct	yct	zct	xch	ych	zch
	0	20.00	0.000	5.000	100.00	0.000	5.00
\$#	xhev	yhev	zhev	lenl	lenm	id	itype
	20.00	0.00	0.00	0.000	0.000		

	1s-d	yna smp d DEV DEV_ʻ	103136_347760	date 08/11/	2023
line#1 line#2 line#3 line#4 line#5	section# fr centroids 1 1.00000E	x-moment x-force x-moment x +03 1.3394E+02 3.1569E+00 -3.1355E-01	y-force y-moment y 3.9475E+01 9.5404E+01 -2.8209E+01	z-moment z-force z-moment z 8.1264E+00 4.4584E+02 -5.5691E+01	(magnitude) (magnitude) (angle) (angle) area
	2 1.00000E	3.8345E+00	2.5654E+00 3.5533E+01 2.0136E+01 -2.8613E+01 1.5458E+02		2.5000E+01 2.5000E+01

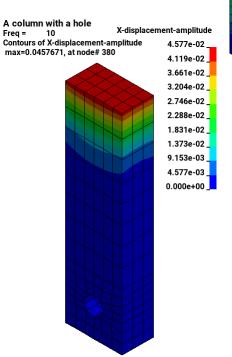

SSD: including residual vectors

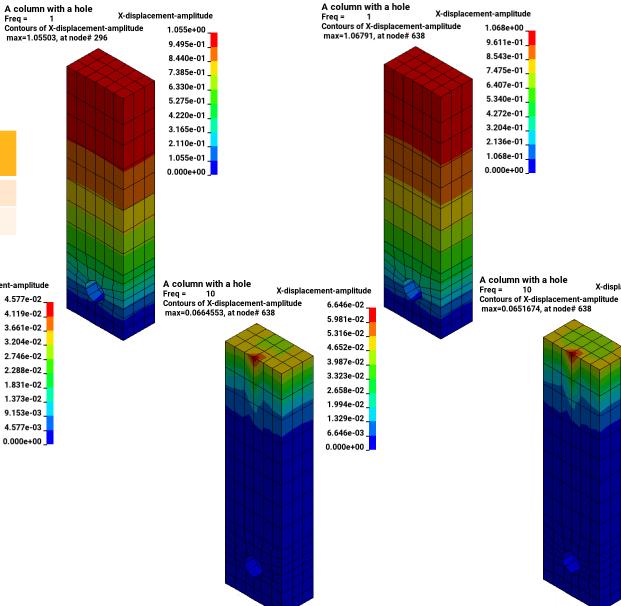
 Step 1: generate eigenmodes and residual vectors (Roger Grimes)

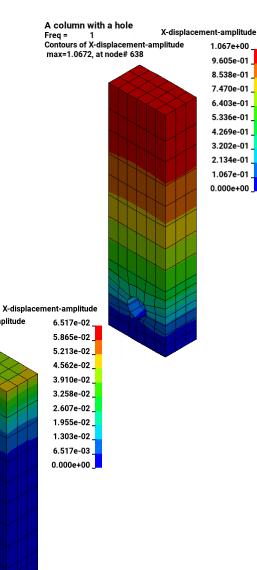
zero v						
zero v						
Θ						
m3						
lcint						
Θ						
1.0 1.0 *CONTROL TERMINATION						

 Step 2: run SSD computation with eigenmodes and residual vectors

*FRE	QUENCY_D	OMAIN_SSD		•				
\$#	mdmin	mdmax	fnmin	fnmax	restmd	restdp	lcflag	
	1	50	Θ.	100000.	(3)	0	1	
\$#	rvmin	rvmax			$\overline{}$			
	1	1						
\$#	dampf	lcdam	lctyp	dmpmas	dmpstf			
\$#						nout	notyp	nova
\$#	nid	ntyp	dof	vad	lc1	lc2	lc3	vid
	637	0	1	0	100	200		
*FREQUENCY DOMAIN PATH								
/residual.vector/d3eigv								
*FREQUENCY DOMAIN PATH RESIDUAL VECTOR								
/residual.vector/d3resvec								


X-displacement

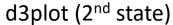



X-displacement

X-displacement (mm)

Freq (kHz)	50 modes	1236 modes	50 modes + residual vector
1	1.055	1.068	1.067
10	4.577e-2	6.646e-2	6.517e-2

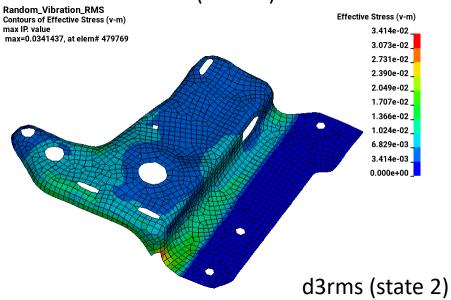
Random vibration: combination of rms stress with prestress


- User would like to do failure analysis using stress in prestressed random vibration
- Total stress is sum of stress in random vibration and prestress
- User suggests to use 3*RMS + prestress
- New d3rms database
 - State 1: RMS response
 - State 2: 3*RMS + prestress
 - State 3: 3*RMS + | prestress |

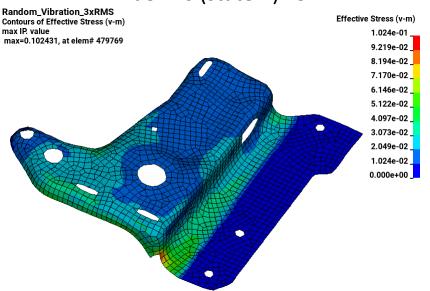
```
mdmax
                          fnmin
                                     fnmax
                                              restrt
                                                                    restrm
                                    90000.
     dampf
               lcdam
                          lctyp
                                    dmpmas
                                              dmpstf
                                                         dmptyp
     0.03
   vaflag
              method
                           unit
                                                vapsd
                                                                                ncpsd
                                                           varms
                                                                     napsd
     ldtyp
             ipanelu
                        ipanelv
                                    temper
                                                         dsflag
                            dof
                                     ldpsd
                                                ldvel
                                                          ldflw
                                                                     ldspn
                                                                                  cid
               stype
                                      2001
*DATABASE FREQUENCY BINARY D3RMS
  binary
                 3.0
                                   filename
    state
                                   ../pressure/d3plot
```

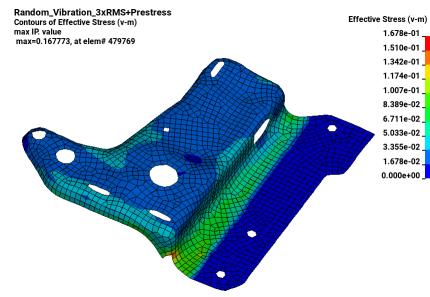
User defined scale factor

Default: 3.0


Pressure_load Time = 1 Contours of Effective Stress (v-m) max IP. value max=0.0763839, at elem# 479769 6.875e-02 6.111e-02 5.347e-02 4.583e-02 3.819e-02 3.055e-02 2.292e-02 1.528e-02

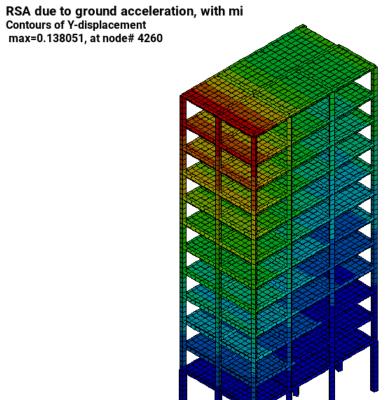
d3rms (state 1) x3

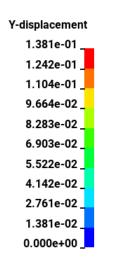

7.638e-03_


0.000e+00

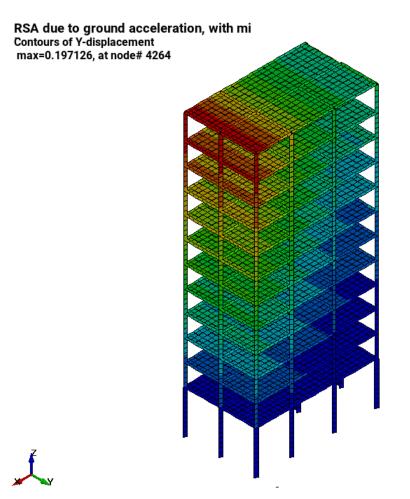
d3rms (state 1)

- Static pressure 10⁴ Pa
- 2.0 G²/Hz z-directional ground acceleration
- Material yield strength:1.50e-01 GPa


Response spectrum analysis: missing mass correction


- In general, a mode superposition using a limited number of modes will miss some mass.
- For response spectrum analysis, static correction can be made by adding static load response for the missing mass.
- Missing mass load is provided by ZPA-∑(mode load).

```
relatv
                                             restrt
                                    100.
            filename
          case1.d3plot
 dampf
           lcdamp
                        ldtyp
                                  dmpmas
                                             dmpstf
   .001
  lctyp
                      lc/tbid
                                                vid
                                                          lnid
                                                                              inflag
binary
```

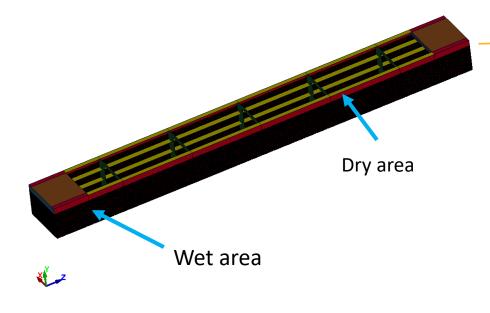


Without missing mass correction

With missing mass correction

Fluid added mass: related Keywords and their usage

Keywords	Description
*BOUNDARY_FLUIDM	Request the calculation of the external, fluid boundary mass on a structural surface in an inviscid, incompressible fluid.
*BOUNDARY_FLUIDM_FREE_SURFACE	Includes the effects of a flat, arbitrarily oriented free surface in the calculation of the *BOUNDARY_FLUIDM mass matrix
*BOUNDARY_FLUIDM_BOTTOM	Includes the effects of a flat, arbitrarily oriented bottom in the calculation of the *BOUNDARY_FLUIDM mass matrix. Due to proximity effect, when nearby, a bottom will increase the added mass experienced by a submerged structure.
*CONTROL_IMPLICIT_EIGENVALUE	Eigmth = 102 for LOBPCG eigensolver.
*FREQUENCY_DOMAIN_	Various frequency domain vibration analysis using eigensolutions

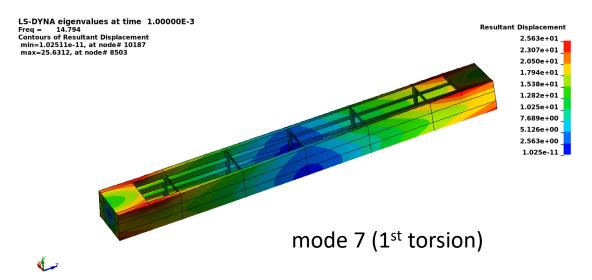

Note:

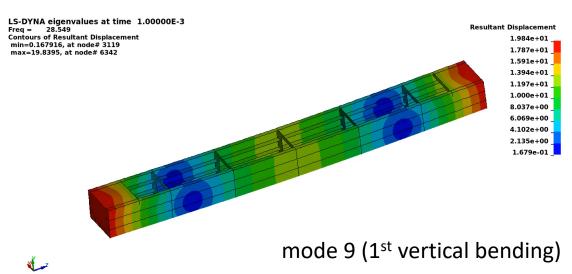
Keyword *BOUNDARY_FLUIDM_BOTTOM can be combined with *BOUNDARY_FLUIDM_FREE_SURFACE in very shallow conditions.

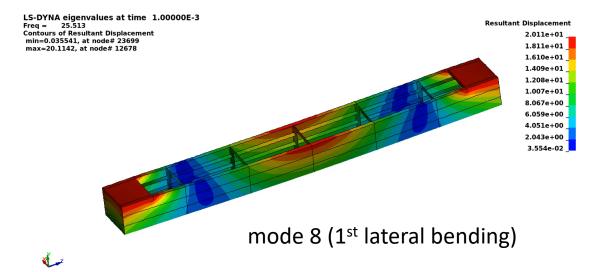
Example: a stiffened, floating box

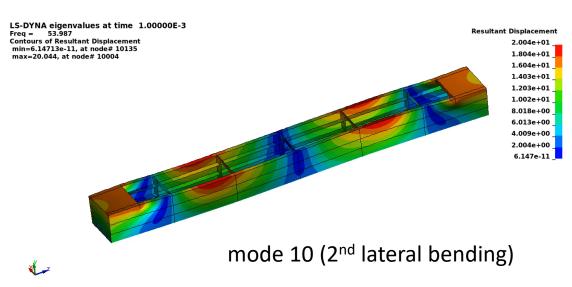
• In-air and in-fluid modal tests were conducted by Cambridge Acoustical Associates in 1998. The stiffened box is 32 ft long and 1.17 ft wide with a draft of 1.96 ft.

Free surface: 24.03 inch from origin of global coordinates

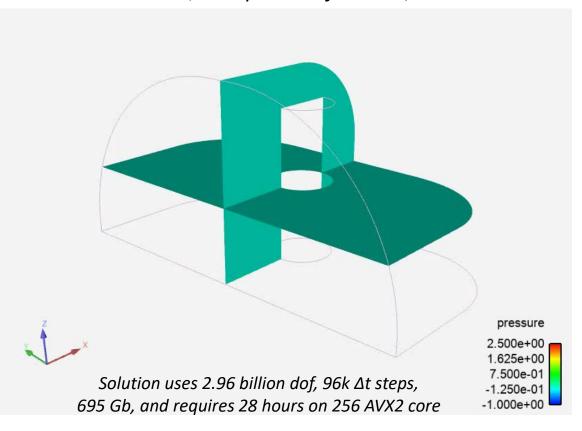

Natural frequencies in-air and in-fluid


Mode	Description	In-Aiı	r (Hz)	In-Fluid (Hz)		
Wiode	Description	Experiment	LS-DYNA	Experiment	LS-DYNA	
7	Torsion	16.1	15.6	14.9	14.8	
8	Lateral bending	29.0	29.5	25.6	25.5	
9	Vertical bending	38.3	37.1	29.5	28.5	
10	Lateral bending	62.6	62.9	55.0	54.0	
11	Vertical bending	94.2	91.0	68.5	65.8	


Note: modes 1-6 are rigid body modes



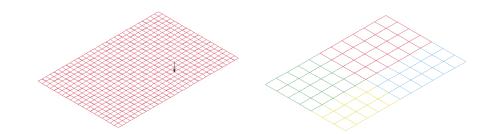
In-fluid eigenmodes for the floating box

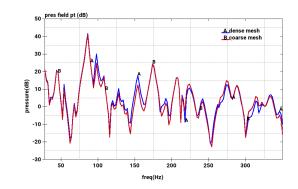


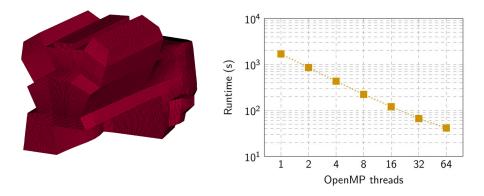
Acoustics by spectral element method

- Reworked transient MPP implementation to overcome unanticipated 2.1 billion barriers.
- Added support for ENSIGHT visualization of LS-DYNA transient spectral element solutions.
- Demos and support (→) provided for ACE, Channel Partners,...
- Study of SE methods for extension to tetrahedra, pentahedra, and pyramids so we can use hex-coring for mesh generation

Steel Pole at 30 cm, Ground Porous Concrete, 50 kHz Pulse, Dissipation of 1.3 dB / 30 cm






Acoustics by BEM: overview of updates

- New boundary conditions
 - acoustic absorption coefficient boundary conditions
 - Symmetry (rigid wall) boundary condition
- An option to get results for new field points quickly
- SMP and fast matrix assembly by skeletonized interpolation (Francois-Henry Rouet)
- BEM run based on velocity from a different mesh "lsdyna i= input.k bem=vel_coarse lbem=vel_dense"

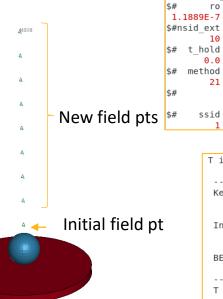
*FR	REQUENCY	DOMAIN ACC	DUSTIC BEM					
\$#	ro	с	fmin	fmax	nfreq	dt out	t start	pref
1	.210000	340.00000	28.000000	350.00000	162	0.001	0.000	2.0000E-5
\$#	nsidext	typeext	nsidint	typeint	fftwin	trslt	ipfile	iunits
	1	1	0	0	4			
\$#	method	maxit	res	ndd	tollr	tolfct	ibdim	npg
	2	1000	1.0000E-6	2				
\$#	ssid	sstype	norm	bem_type	restart	iedge	noel	. nfrup
	1	2	0	0	4			

Engine block model, 78k dof. Speed-up of 41 out of 64 using OpenMP

Acoustics by BEM: a quick restart to get more results

Suggestion from Ansys WB team (Laurent Sabatier):

Acoustic BEM workbench platform. One thing we were wondering is if it was possible to define the measurement point after the solve.


In the current workflow we define a node as a measurement point before solving, which means that the user must know where the pressure will be measured before solving. Would it be possible for the user to define this point after the solve and to retrieve the pressure at this location?

This process is the one currently used in APDL Harmonic Acoustic, where a microphone is created after the solve and a routine compute the pressure at this point based on the pressure on the mesh.

run jobs	# of field pts	# of CPUs	Total CPU cost
original run	1	24	46 min 34 sec
restart run	9	1	0.3 sec

Total CPU time

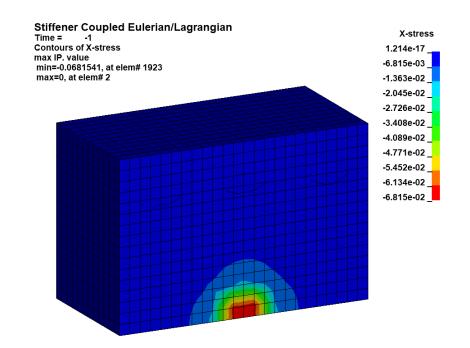
(0.0	0.02							
meth	nod	maxit	tol iter	ndd	tol lr	tol fact	ibdim	npg	
	21	1000	1.000E-6	8	0.000	0.000	0	0	
		nbc	restrt	iedge	noel	nfrup			
		1	2						
5.5	sid	sstype	norm	bem_type	lc1	lc2			
	1	2	1	1					
Г	Тi	ning	infor	mation					
		_		CPU(seconds)	%CPU	Clock(second	s) %Clock		
	Key	word Proc	essing	9.7583E-02	25.31	9.7585E-0	2 16.76		
	K	W Reading		5.1140E-02	13.27	5.1142E-0	2 8.78		
	K	W Writing		1.0922E-02	2.83	1.0922E-0	2 1.88		
	Ini	tializati	on	2.2386E-01	58.07	4.2051E-0	1 72.23		
	I	nit Proc I	Phase 1	1.5331E-01	39.77	2.4815E-0	1 42.63		
	I	nit Proc I	Phase 2	3.6507E-02	9.47	1.0854E-0	1 18.65		
	BEM	Acoustic	s	6.4064E-02	16.62	6.4065E-0	2 11.00		
	F	ield outp	ut	2.9095E-02	7.55	2.9095E-0	2 5.00		
	То	tals		3.8550E-01	100.00	5.8216E-0	1 100.00		
	Prob	lem time	=	0.0000E+00					
	Prob	lem cycle	=	0					

1010.0

nsid int type int fft win

2.5E-5


trslt



0 seconds (0 hours 0 minutes 0 seconds)

d3max

- ALE results are supported (Hao Chen, Nicolas Aquelet, Ian Do, and Nikolay Mladenov)
- Small restart and simple restart are supported
- Thick shell elements are supported

Conclusion Ansys

Summary

- A series of NVH solvers have been developed in LS-DYNA
 - Focused on application in automotive industry, where LS-DYNA has been widely used.
 - Allow users to run NVH analysis with minor changes to their existing LS-DYNA models (crash, etc.)
 - "One button" Crash model to NVH model conversion is on the way (Philip Ho)
 - Aiming at multi-disciplinary design optimization for vehicles, with other modules in LS-DYNA.
 - Seamless coupling / integration with other solvers in LS-DYNA (e.g. metal forming)
- Is being integrated to Ansys Mechanical environment
- Tested and validated by many users (still, this is an on-going effort, and we need your help ⊕)
- Training, tutorials and samples are available (ALH, or local)
- More features to be added (adaptive remeshing for boundary elements, nonlinear acoustics, etc.)
- Looking forward to feedback and suggestions from customers like you ©

©2023 ANSYS, Inc.

Ansys

