This is Hans

Alex Gromer, Dirk Fressmann, Skylar Sible, Silvia Mandel, Li Högberg, Torbjörn Johansen, Fabian Koch

What – or better – Who is Hans?

Hans is a high-fidelity LS-DYNA human body model

Hans represents an average male person – AM50

Our Vision:
 HBM to support advanced product development in multiple industries

Motivation and targeted customer benefits

- In the second half of the decade, we expect virtual certification in the automotive industry for occupant and pedestrian safety
 - EuroNCAP, IIHS, C-NCAP are actively working on such protocols

- DYNAmore/ANSYS is involved in the EuroNCAP activities

Automotive:

- Increased # of HBM analyses for next gen restraint systems/autonomous driving positions and to prepare for homologation
- Occupant/Pedestrian safety
- Comfort/ergonomics simulations
- Consumer Products: Helmets, body armor,
- Medical industry: Implants, medical devices, patient specific health care

Defense

Benefits of our Hans HBM:

- High biofidelity/accurate results
- deep insights

- best possible user experience/expert support
- constant maintenance
 - road map for future needs

Modeling Fundamentals: Hans V1.0

• Passive model targeted for any kind of impact simulation

- Modeling the physics:
 - Model the human body with a high level of detail
 - Avoiding abstraction and substitute approaches
 - Geometry and materials are modeled as is
 - → Less tweaking needed to correlate to test data
 - → Better confidence in load cases that are not covered by tests
- Focus on the musculoskeletal system at first
- Following the modeling approaches of the successful DYNAmore Dummy models

Hans Ingredients: Geometry

- High resolution/quality CAD aquired from partner company
 - CAD data based on high resolution MRI and CT-Scans of **one** individual
 - Scan in recumbend position corrections applied for upright standing posture
- All mechanically relevant parts are discretizied
- Body Specs of Individual at time of scan
 - 79 kg 176 cm BMI 25.5
 - 21 years old
 - Athlete body shape

Hans Ingredients: Materials

Materials taken from literature for major body parts, divided into functional layers

Layer 1
Cortical &
trabecular bone

- Elastic PlasticMaterialModels
- Optional:
 Strain based
 failure
- Future
 Release:
 Damage
 based failure

Layer 2
Ligaments & cartilage

- Fabric Models (shells)
- Ogden-based (solids)
- Rate dependent

Layer 3
Muscle, tendon,
myotendinous
junction

- Ogden-based
- Rate dependent

Layer 4
Organs,
blood filling, brain

- Ogden-based
- Rate dependent
- Visco-elastic
- Airbags
- Fluids: EOS

Layer 5
Skin & adipose tissue

- Ogden-based
- Rate dependent
- Fabric

Muskuloskeletal System: Skeleton

cortical bones

- hard outer bone layer
- mostly shell elements, partly solid elements
- Partly reflect thickness distribution

• trabecular bone

- Weak and porous structure
- Solid elements

Cortical Bone thickness

average male (Holcombe et.

Example: Rib cage correlation

Step 1: Part level correlation – Rib 3

Step 2: Component level correlation

Step 3: Full Body correlation

Local impact on single ribs 3-7

Impact on thorax along belt line

Del Pozo et. al – Structural response and strain patterns of isolated ribs under lateral loading, 2011

Shaw et. al – quasi-static and dynamic thoracic loading tests: Cadaveric Torsos, 2007

Kroell et. al – Impact tolerance and response of the human thorax, 1971

Musculoskeletal System: Muscles

• Muscle fibers (Takaza, 2012)

- very soft contractile tissue

• Tendons (Maganaris, 1999)

- connect muscles to bones, approx. 300x stiffer

Myotendinous junction

- transition between muscles and tendons to transmit muscle forces
- averaged material stiffness

Macro Fiber Technology - MFT

- Assumption: muscles only act in the tensile regime
- During a guided motion in a passive model compression forces in muscles can occur
- Adding discrete Hill-type muscle elements ("fibers") and use LS-Dyna's PID controller to prevent compressive forces within muscles → no user interaction required
- MFT can improve kinematics during load case analyses

Inner Organs

- All inner organs are individually discretized
- Main purpose for Hans V1.0:
 - Provide mass
 - Provide the correct stack up during torso or abdominal compression
- Materials
 - Literature based
 - derived from muscle material
 - Stomach, colon, bladder modeled as airbags
- For the initial release: little fine tuning on the organs → further tuning in a later release

Head and Brain Model

Skin

Soft tissue

Skull with inner and outer cortical table
Arachnoid Skin and subdural fluid
Head and bridging veins
Gray matter
White matter

Brain Fluid Pressure

Nahum et. al – Intracranial Pressure Dynamics During Head Impact, 1977

Basic Kinematic Checks

0° shoulder abduction

45° shoulder abduction

90° shoulder abduction

Hans Model Stats

- Body Specs: ~77kg, 176cm, BMI 24.9, Age 30-40
- Model size
 - Number of nodes: ~1.6Mio
 - Number of elements: ~1.9Mio
 - Number of parts: 1,978
 - Macro Fiber Parts (keep adding): 138
- Contacts
 - 1 single surface contact
 - 5 tied contacts to attach soft tissue
- Recommended time step: 0.5µsec

Positioning

- simulation-based positioning using marionette technique
 - Supported pre-processors: ANSA

- Tree-File included
- Due to the level of detail in the muscles, straight forward posing does not deliver acceptable results

Folding of muscles and skin layers

Positioning cont'd

- Applying the MFTs to the positioning process delivers realistic deformations in the body
- Best/fastest results can be achieved when changes are small
- Jack of all trades: Zero-G position

Occupant Load Case Examples

Step 1: Positioning

Load Case: Sled Test

Load Case: Submarining Check

Simulation based positioning Created by a commonly used pre-processor

Shaw et. al – Sled test

Pedestrian Load Case Example EuroNCAP TB024

Step 1: Positioning

Load Case: FCR 30kph

Load Case: RDS 40kph

Robustness

• High robustness through

Best possible element/mesh quality

- material models

- Contact parameter

impactor tests with initial velocity (v₀=35kph)

impactor tests with constant velocity (v=30kph)

Hans V1.0 Release

- **R12.2** is the model development version and required to use Hans
- Release will be cross-checked with newer versions.
- Human Body Model in three unit-systems
 - kg, m, sec, N (SI) // ton, mm, sec, N // kg, mm, ms, kN
- Delivery model in standing and sitting postures One Model
- Accessoires like shoes, ...
- Treefile for positioning of the model in the commonly used pre-processing tools
- Injury extraction capabilities
- Documentation/Correlation report
- 1st class expert support

Forman 2012)

Current Status and Outlook

- Hans model build has been finalized
- Full body correlation work for automotive applications still in progress
- Release Candidate rollout for pilot customers starting in November
 2023
 - Testing in foreign environments and actual customer load cases
 - First valuable customer feedback
- V1.0 release to a wider customer base in H1 2024

Ansys

