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Introduction

• For many years, the Newton iterative method in combination with optional BFGS has 
been the nonlinear implicit solver of choice
- Full Newton is recommended for strongly nonlinear problems, each iteration is 

expensive, and performance relies to some extent on “good” tangent 
implementations

- BFGS is recommended for weakly to moderately nonlinear problems, iterations are 
relatively cheap and works reasonably well for many problems, and poor tangents 
may be slightly corrected by the update, but robustness is affected when 
encountering unexpected nonlinearities

• There seems to be a gap in the solution portfolio, for many problems full Newton tends 
to be slow while BFGS tends to lack robustness
- Is there an alternative?
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GMRES – Generalized Minimal RESidual
• Assume we want to solve 𝑲𝑲𝑲𝑲 = 𝑭𝑭 without factorizing 𝑲𝑲

• The characteristic polynomial of 𝑲𝑲 is

- 𝑝𝑝 𝜆𝜆 = det 𝜆𝜆𝑰𝑰 − 𝑲𝑲 = 𝑐𝑐0 + 𝑐𝑐1𝜆𝜆 + 𝑐𝑐2𝜆𝜆2 + ⋯+ 𝑐𝑐𝑛𝑛𝜆𝜆𝑛𝑛

• By Cayley-Hamilton theorem, 𝑲𝑲 satisfies 𝑝𝑝 𝑲𝑲 = 𝟎𝟎, so with a bit of rearrangement

- 𝑲𝑲−1 𝑭𝑭 = �̃�𝑐1𝑭𝑭 + �̃�𝑐2𝑲𝑲𝑭𝑭 + ⋯+ �̃�𝑐𝑛𝑛𝑲𝑲𝑛𝑛−1𝑭𝑭

• That is, the solution 𝑲𝑲 that we seek is contained in the Krylov space

- 𝒱𝒱𝑛𝑛 𝑲𝑲,𝑭𝑭 = span 𝑭𝑭,𝑲𝑲𝑭𝑭, … ,𝑲𝑲𝑛𝑛−1𝑭𝑭

• Note that this space is not necessarily ℛ𝑛𝑛

- If 𝑭𝑭 happens to be an eigenvector to 𝑲𝑲 then the 𝒱𝒱𝑛𝑛 𝑲𝑲,𝑭𝑭 has dimension 1, and any linear 
dependence among the vectors will reduce the size of this space accordingly

• The unspoken hope, and the idea behind GMRES, is that a sufficiently accurate solution can be 
obtained within 𝒱𝒱𝑚𝑚 𝑲𝑲,𝑭𝑭 for 𝑚𝑚 ≪ 𝑛𝑛
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GMRES – Generalized Minimal RESidual
• Matrix multiplications are relatively cheap, so start forming 𝒗𝒗1 = 𝑭𝑭,𝒗𝒗2 = 𝑲𝑲𝑭𝑭, 𝒗𝒗3 = 𝑲𝑲2𝑭𝑭, …

• Each new vector must be orthogonalized to the rest, so we will end up with a set of 
orthonormal vectors that spans the space of interest

- 𝒱𝒱𝑚𝑚 𝑲𝑲,𝑭𝑭 = span 𝒒𝒒1,𝒒𝒒2, … ,𝒒𝒒𝑚𝑚
• The solution we look for is the vector 𝒗𝒗 in 𝒱𝒱𝑚𝑚 𝑲𝑲,𝑭𝑭 that minimizes 𝑲𝑲𝒗𝒗 − 𝑭𝑭 , which turns out 

to be a solution to normal equations of dimension 𝑚𝑚
- 𝑸𝑸𝑚𝑚+1 𝑯𝑯𝑚𝑚 = 𝑲𝑲 𝑸𝑸𝑚𝑚

- 𝑯𝑯𝑚𝑚
𝑇𝑇 𝑯𝑯𝑚𝑚𝒚𝒚 = 𝑸𝑸𝑚𝑚

𝑇𝑇 𝑲𝑲𝑇𝑇𝑭𝑭
- 𝒗𝒗 = 𝑸𝑸𝑚𝑚𝒚𝒚

• Here 𝑸𝑸𝑗𝑗 is the matrix of collected 𝒒𝒒𝑖𝑖, 𝑖𝑖 = 1, … 𝑗𝑗, and 𝑯𝑯𝑚𝑚 is an 𝑚𝑚 + 1 × 𝑚𝑚 matrix on upper 
Hessenberg form

• This system is relatively cheap to solve, utilizing a QR-factorization of 𝑯𝑯𝑚𝑚
𝑇𝑇 𝑯𝑯𝑚𝑚
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Jacobian-Free GMRES
• Instead of forming the Krylov space by recursive multiplications by 𝑲𝑲, we note that for any 𝒗𝒗 and 

sufficiently small 𝜖𝜖

- 𝑲𝑲𝒗𝒗 ≈ 𝑭𝑭 𝒙𝒙+𝜖𝜖𝒗𝒗 −𝑭𝑭 𝒙𝒙
𝜖𝜖

• This means that our Krylov space can be formed by recursively applying

- 𝒗𝒗𝑗𝑗+1 = 𝑭𝑭 𝒙𝒙+𝜖𝜖𝒗𝒗𝑗𝑗 −𝑭𝑭 𝒙𝒙
𝜖𝜖

• Everything else in the GMRES approach is unchanged, no explicit stiffness required

• To make the method reasonably efficient, we need preconditioning of the system

• Assume 𝑷𝑷 is a good approximation of 𝑲𝑲−1, then we form the Krylov space as

- 𝒗𝒗𝑗𝑗+1 = 𝑭𝑭 𝒙𝒙+𝜖𝜖𝑷𝑷𝒗𝒗𝑗𝑗 −𝑭𝑭 𝒙𝒙
𝜖𝜖

- 𝒱𝒱𝑚𝑚 𝑲𝑲,𝑭𝑭 = span 𝑷𝑷𝒗𝒗1,𝑷𝑷𝒗𝒗2, … ,𝑷𝑷𝒗𝒗𝑚𝑚
- 𝒗𝒗1 = 𝑭𝑭
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Algorithm and Usage

• The complete JFNK algorithm becomes

- In iteration 𝑖𝑖, solve for a full Newton step resulting in a factorization of 𝑲𝑲𝑖𝑖

- In iteration 𝑗𝑗, 𝑗𝑗 = 𝑖𝑖 + 1, 𝑖𝑖 + 2, 𝑖𝑖 + 3, … , 𝑖𝑖 + ILIMIT, obtain the step direction from a 
JFNK update of dimension KSSIZE using 𝑷𝑷 = 𝑲𝑲𝑖𝑖

−1 as the preconditioner
- Start over with a full stiffness reformation

• The method is activated by NSOLVR=13 on *CONTROL_IMPLICIT_SOLUTION
- ILIMIT and MAXREF have the same meanings as for BFGS
- KSSPACE on the same card refers to the size of the Krylov subspace
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Discussion

• The stiffness matrix 𝑲𝑲 is the linearization of the force 𝑭𝑭
- The terrain infinitesimally close to a geometry is examined, 

and a search direction is based on this information

- An exact calculation of the stiffness matrix 𝑲𝑲 may be 
impractical because of complexity and cost

- Severe nonlinearities may not be captured properly

• The perturbations in JFNK are of size 𝜖𝜖, so the radius of 
influence is finite rather than miniscule
- Contact situations, plasticity, damage and other “far-field” 

nonlinearities can be “sensed” and accounted for
- Correction is “richer” compared to BFGS
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Examples

• Rigid Walls
- Taylor bar impact
- LEGO element
- Prism to rubber

• Mixed element
- Toy vehicle
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Taylor bar impact
Symm​
MF2​

NonSym​
MF2​

Symm​
MUMPS​

NonSym
MUMPS​

JFNK​ 158​ 162​ 454​ 266​

BFGS​ n/a​ n/a​ n/a​ 1277​

FN​ 379​ 452​ 1236​ 1313​
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LEGO element test

• Displacement of 10 mm should require 100 N

Method Iterations

ALM + Full 
Newton

14338

ALM + JFNK 3446
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Prismatic indentation
• 50 mm indentation

Method Iterations

ALM + Full Newton 2677

ALM + JFNK 439
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Toy vehicle

• Car model
*CONSTRAINED_JOINT_REVOLUTE

*CONSTRAINED_LINEAR_LOCAL
Equation converts rotations
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Toy vehicle • Twisting of the band
- Multistage analysis
- One revolution at a time
- Final state passed on as dynain.lsda
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Summary

• New non-linear solver implemented 
- Jacobian-Free Newton-Krylov
- Suited for saddle-point type problems (ALM) and “large particularly nonlinear” 

problems

• Tested for some non-trivial situations
- Promising prospects but more work is needed, perhaps in collaboration with linear 

algebra team
- Important to maintain the “explicit” efficiency for the method to be advantageous
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