Implementation of u-P Elements for Incompressible Hyperelastic Materials

Fredrik Bengzon, <u>Thomas Borrvall</u> and Anders Jonsson, DYNAmore Nordic AB, an Ansys Company

Background

- LS-DYNA is historically renowned as an explicit code, primarily intended for dynamic analyses
- For explicit, constraints are either
 - Sequentially applied; imposes restrictions in situations of dependency
 - Penalty enforced; accuracy and robustness is sensitive to the choice of scale factors
- With the advent of implicit, many constraints are simultaneously treated as part of an elimination strategy
 - Chain dependencies are treated properly, as long as not over constraining the system
 - Inequalities and some other constraints remain as penalty; in particular incompressibility

Incompressibility

- Incompressibility by means of a mixed element (u-P) formulation could be incorporated into the direct elimination framework, but
 - Awkward implementation code for elements and constraints are "out-of-sync"
 - Potential overhead for treating the constraints
- Lagrangian multipliers seem to be the preferred method in this context
 - Framework for incorporating these degrees of freedom into the solution variables
- So why even do it?
 - Occasionally customers ask for it
 - Integral part of a generic implicit finite element software
 - Could it provide advantages in favor of "nearly" incompressible materials?
 - Given an existing Lagrangian multiplier framework, most of the work is already done

Discrete setting

- Consider an arbitrary simulation model kinematically represented by the solution field x, for which the solution is implicitly determined by an equilibrium equation f(x) = 0
- An incompressibility constraint can be enforced by adding auxiliary equations v(x) = 0
 - $oldsymbol{v}$ is a vector of whatever length required to establish the appropriate constraint
 - Number of elements in question, or number of integration points
 - Any unwanted locking phenomena must be carefully considered when designing the constraint
 - Each equation has local support, depending only on the coordinates in the vicinity of the element considered
- Derived from an energy principle, the resulting equations become $f + \left(\frac{\partial v}{\partial x}\right)^T \lambda = 0$ in addition to v = 0
 - System increases by the number of extra constraints added
 - Linearized system is symmetric but indefinite, requirements on linear solver

Implementation and Usage

- To activate the u-P elements
 - Use MAT_027 or MAT_077 with PR = 0.5
 - Use solid elements 2, 15, 10, 16
- What solution method to chose for implicit simulations involving Lagrange multipliers in general?
 - First recommendation, use JFNK
 - Set NSOLVR = 13 on *CONTROL IMPLICIT SOLUTION
 - Use default line search method

- Should poor convergence occur, try
 - Standard BFGS
 - Full Newton
- The u-P elements may work better with the MUMPS linear solver
 - Set LSOLVR= 30 on *CONTROL_IMPLICIT_SOLVER

Examples - overview

- Mechanism
- Rubber donut
- Rubber bellow
 - Bending
 - Pull-out
 - Translate
- Twisting a rubber band
- Window sealing

Mechanism

- Rubber, using MAT77,
 - *MAT HYPERELASTIC RUBBER
 - Approximately corresponding to shore-A 63
- Three stages
 - Press fit of rubber
 - Insert
 - Pull-out

Mechanism

- Rubber, using MAT77,
 - *MAT HYPERELASTIC RUBBER
 - Approximately corresponding to shore-A 63
- Three stages
 - Press fit of rubber
 - Insert
 - Pull-out
- Test of
 - Element formulations, contacts

Mechanism

- Study of different element formulations
 - Linear and Quadratic tet and Linear hexa
 - Standard FE, vs. CPE and u-P
- In this case, the u-P elements are more efficient
- Using JFNK for the quadratic tet and u-P element reduces the simulation time by 77%

Relative solution times using MUMPS solver and full Newton

	Standard	СРЕ	U-P
Linear nodal avg. tet (ef 13)	3.53	N/A	N/A
Linear hex	6.91	2.65	1
Quadratic tet	153	177	35

Mechanism

Solution time comparison

Rubber donut

- Rubber, using MAT77,
 - *MAT HYPERELASTIC RUBBER
 - C10=0.162, C01=0.041 ("soft")
 - C10 = 0.427, C01=0.107 ("hard")
- 10-noded tet u-P elements
- Two stages
 - Pre-loading
 - Pull-out of pin

- Test of
 - Contacts with shells
 - Multistage analysis

Rubber donut

• Stage 1: Pre-load

Rubber donut

• Stage 2: Pullout

• Using MAT77, *MAT_HYPERELASTIC_RUBBER

- Approximately corresponding to shore-A 63

- Test of press-fit and large deformation
 - Single surface contact
 - Multistage analysis
- The different load cases
 - Bend
 - Translate
 - Pull-out

• Using MAT77, *MAT_HYPERELASTIC_RUBBER

- Approximately corresponding to shore-A 63

• Stage 1: Press-fit

• Load case: bend

• Load case: translate

• Using MAT77, *MAT HYPERELASTIC RUBBER

- Test of
 - Single surface contact
 - Multistage analysis
- Two different load cases
 - Twist the band
 - Roll a car

- Twisting of the band
 - Multistage analysis
 - One revolution at a time
 - Final state passed on as dynain.lsda
- Using standard BFGS settings
- Manages 8.5 twists before convergence failure

• Performance comparison

Rubbe band twist simulation Solution time comparison

• Performance comparison

Rubbe band twist simulation

Solution time comparison

• Simulate testing of a window sealing profile

- Quasi 2D model
- Single surface contact

Window sealing

Window sealing

Deformation

- High mesh resolution, element length in rubber: 0.2 mm

Window sealing

Test of a window sealing profile

Normalized solution times

Window sealing example

Summary and outlook

- Mixed displacement pressure elements have been implemented for incompressible hyperelastic materials.
 - Solid elforms 2, 15, 10 and 16
 - MAT27 and 77
- Tested for several non-trivial examples with promising results
- The JFNK Non-linear solution scheme shows a great potential for reducing solution time
- Further possible developments
 - Axi-symmetric solids
 - Support more materials
 - Further studies on implicit/explicit switching using u-P elements

