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Background

• LS-DYNA is historically renowned as an explicit code, primarily intended for dynamic 
analyses

• For explicit, constraints are either
- Sequentially applied; imposes restrictions in situations of dependency
- Penalty enforced; accuracy and robustness is sensitive to the choice of scale factors

• With the advent of implicit, many constraints are simultaneously treated as part of an 
elimination strategy
- Chain dependencies are treated properly, as long as not over constraining the system
- Inequalities and some other constraints remain as penalty; in particular 

incompressibility
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Incompressibility
• Incompressibility by means of a mixed element (u-P) formulation could be 

incorporated into the direct elimination framework, but
- Awkward implementation – code for elements and constraints are “out-of-sync”
- Potential overhead for treating the constraints

• Lagrangian multipliers seem to be the preferred method in this context
- Framework for incorporating these degrees of freedom into the solution variables

• So why even do it?
- Occasionally customers ask for it
- Integral part of a generic implicit finite element software
- Could it provide advantages in favor of “nearly” incompressible materials?
- Given an existing Lagrangian multiplier framework, most of the work is already done
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Discrete setting
• Consider an arbitrary simulation model kinematically represented by the solution field 𝒙𝒙,

for which the solution is implicitly determined by an equilibrium equation 𝒇𝒇(𝒙𝒙) = 𝟎𝟎

• An incompressibility constraint can be enforced by adding auxiliary equations 𝒗𝒗(𝒙𝒙) = 𝟎𝟎
- 𝒗𝒗 is a vector of whatever length required to establish the appropriate constraint

• Number of elements in question, or number of integration points
• Any unwanted locking phenomena must be carefully considered when designing the constraint
• Each equation has local support, depending only on the coordinates in the vicinity of the element 

considered

• Derived from an energy principle, the resulting equations become 𝒇𝒇 + 𝜕𝜕𝒗𝒗
𝜕𝜕𝒙𝒙

𝑇𝑇
𝝀𝝀 = 𝟎𝟎 in 

addition to 𝒗𝒗 = 𝟎𝟎
- System increases by the number of extra constraints added
- Linearized system is symmetric but indefinite, requirements on linear solver
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Implementation and Usage

• To activate the u-P elements
- Use MAT_027 or MAT_077 with 
PR = 0.5

- Use solid elements 2, 15, 10, 16

• What solution method to chose for 
implicit simulations involving Lagrange 
multipliers in general?
- First recommendation, use JFNK
- Set NSOLVR = 13 on 
*CONTROL_IMPLICIT_SOLUTION

- Use default line search method

- Should poor convergence occur, try 
• Standard BFGS
• Full Newton

• The u-P elements may work better with 
the MUMPS linear solver
- Set LSOLVR= 30 on 
*CONTROL_IMPLICIT_SOLVER
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Examples - overview

• Mechanism

• Rubber donut

• Rubber bellow
- Bending
- Pull-out
- Translate

• Twisting a rubber band

• Window sealing
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Mechanism

• Rubber, using  MAT77, 
*MAT_HYPERELASTIC_RUBBER

- Approximately corresponding to 
shore-A 63

• Three stages
- Press fit of rubber
- Insert 
- Pull-out 
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Mechanism

• Rubber, using  MAT77, 
*MAT_HYPERELASTIC_RUBBER

- Approximately corresponding to 
shore-A 63

• Three stages
- Press fit of rubber
- Insert 
- Pull-out

• Test of
- Element formulations, contacts
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Mechanism

• Study of different element formulations
- Linear and Quadratic tet and Linear 

hexa
- Standard FE, vs. CPE and u-P

• In this case, the u-P elements are more 
efficient

• Using JFNK for the quadratic tet and u-P 
element reduces the simulation time by 
77%

Standard CPE U-P

Linear nodal 
avg. tet (ef 13)

3.53 N/A N/A

Linear hex 6.91 2.65 1

Quadratic tet 153 177 35

Relative solution times using MUMPS solver and full Newton
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Rubber donut

• Test of
- Contacts with shells
- Multistage analysis

• Rubber, using  MAT77, 
*MAT_HYPERELASTIC_RUBBER

- C10=0.162, C01=0.041 (“soft”)
- C10 = 0.427, C01=0.107 (“hard”)

• 10-noded tet u-P elements

• Two stages
- Pre-loading
- Pull-out of pin
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Rubber donut

• Stage 1: Pre-load
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Rubber donut

• Stage 2: Pullout
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Rubber bellow

• Using  MAT77, *MAT_HYPERELASTIC_RUBBER

- Approximately corresponding to shore-A 63

• Test of press-fit and large deformation
- Single surface contact
- Multistage analysis

• The different load cases
- Bend
- Translate
- Pull-out
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Rubber bellow

• Using  MAT77, *MAT_HYPERELASTIC_RUBBER

- Approximately corresponding to shore-A 63

Pressfit

dynain.lsda Bend

Translate

Pullout

Load cases
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Rubber bellow

• Stage 1: Press-fit
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Rubber bellow

• Load case: bend
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Rubber bellow

• Load case: translate
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Rubber bellow

• Load case: pullout
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Rubber band

• Using  MAT77, *MAT_HYPERELASTIC_RUBBER

• Test of
- Single surface contact
- Multistage analysis

• Two different load cases
- Twist the band
- Roll a car
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Rubber band

• Twisting of the band
- Multistage analysis
- One revolution at a time
- Final state passed on as dynain.lsda

• Using standard BFGS settings

• Manages 8.5 twists before convergence failure
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Rubber band

• Car model
*CONSTRAINED_JOINT_REVOLUTE

*CONSTRAINED_LINEAR_LOCAL
Equation converts rotations
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Rubber band

• Car model
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Rubber band

• Performance comparison
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Rubber band

• Performance comparison
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Window sealing

• Simulate testing of a window sealing profile
- Quasi 2D - model
- Single surface contact

Black: Rubber #1, 
“stiff”

Grey: Rubber #2, 
“soft”

Glass, using 
*MAT_RIGID in 
this case

Door parts, using 
*MAT_RIGID in this case
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Window sealing

• Deformation
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Window sealing

• Deformation
- High mesh resolution,

element length in rubber: 0.2 mm
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Window sealing

• Test of a window sealing profile
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Summary and outlook

• Mixed displacement – pressure elements have been implemented for incompressible 
hyperelastic materials.
- Solid elforms 2, 15, 10 and 16
- MAT27 and 77

• Tested for several non-trivial examples with promising results 

• The JFNK Non-linear solution scheme shows a great potential for reducing solution 
time

• Further possible developments
- Axi-symmetric solids
- Support more materials
- Further studies on implicit/explicit switching using u-P elements
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