

Fatigue assessment of an adhesively bonded EV battery enclosure

Using LS-DYNA implicit tools

Oasys | LS-DYNA ENVIRONMENT

Crash performance

Pedestrian safety

Occupant safety

Interior systems

Noise, Vibration, Harshness

Durability performance

Closures performance

Transient thermal analysis

Coolant flow optimisation

Cell penetration analysis

Fatigue analysis

Oasys | LS-DYNA ENVIRONMENT

Automotive consulting

EV battery consulting

EV battery enclosure fatigue

What is fatigue?

• Eurocode 9 definition:

"weakening of a structural component, through crack initiation and propagation, caused by repeated stress fluctuations"

• Fatigue failure occurs from stress cycles *lower* than the component's yield stress

Fatigue assessments – S-N curves

Fatigue assessments – S-N curves

Number of cycles at failure (log axis)

Fatigue assessments – S-N curves

Fatigue risks for EV battery enclosures

- The battery enclosure must have sufficient strength/stiffness to:
 - Protect the batteries during a vehicle crash event
 - Contribute to overall stiffness of the vehicle
 - Provide containment in the event of thermal runaway
 - Withstand inertial loads from the mass of the batteries
- Total mass of "battery modules + enclosure" can be ~ 0.5 -1.0 tonnes

The rise of adhesively bonded designs

	Adhesive bonding	Spotwelds	
Connection type	Continuous (large area) connections	Discrete (small area) connections	
Most common for	Aluminium structures	Steel structures	
Material properties	Overall lightweight solution, and does not affect strength of parent aluminium material	Typically not suitable for aluminium, due to heat weakened zone around the weld	
Fatigue assessment	Emerging area of study	Established methods	
	https://cen.acs.org/articles/92/i16/Automakers-Look-Adhesives-Aluminum-Gas.html	https://m.roadkillcustoms.com/how-to-simulate-resistance-spot-welds/	

Fatigue assessment: LS-DYNA model

Fatigue assessment: LS-DYNA model

- Adhesive ***SOLID** elements modelled from mid-surface to mid-surface of adjacent aluminium plates
- Using ***MAT_ARUP_ADHESIVE**, defined with 0.3mm bond thickness

LS-DYNA implicit solvers

Keyword	Comment		
*CONTROL_IMPLICIT_GENERAL	Activates implicit mode and defines timestep		
*CONTROL_IMPLICIT_AUTO	Activates automatic timestep control		
*CONTROL_IMPLICIT_SOLVER	Defines linear equation solver		
*CONTROL_IMPLICIT_SOLUTION	Defines equilibrium search and convergence tolerances		
*CONTROL_IMPLICIT_EIGENVALUE	Normal modal analysis Equivalent to NASTRAN SOL103		
*FREQUENCY_DOMAIN_FRF	Direct freq-domain response analysis Equivalent to NASTRAN SOL108		
*CONTROL_IMPLICIT_DYNAMICS	Direct time-domain response analysis Equivalent to NASTRAN SOL109		
*FREQUENCY_DOMAIN_RANDOM_VIBRATION(_FATIGUE)	Modal freq-domain response analysis to random vibration Equivalent to NASTRAN SOL111		
*FREQUENCY_DOMAIN_SSD (_FATIGUE)	Modal freq-domain response analysis to steady state dynamics Equivalent to NASTRAN SOL111		
*CONTROL_IMPLICIT_MODAL_DYNAMIC	Modal time-domain response analysis Equivalent to NASTRAN SOL112		
and many more			

Predicting fatigue performance of structures

	Random vibration fatigue assessment using				
	Time domain	Frequency domain			
Physical tests	With random cyclic loading, until test specimen fails Manda Mand	n/a			
	Random transient input loading t	Random input loading from a defined PSD [†]			
	Slower analysis than frequency domain, producing more data (therefore, need to focus on regions of greatest importance)	Fast analysis method, which outputs element stress PSDs [†] (therefore, can assess all elements and do many studies)			
FE analysis	More flexibility with the fatigue assessment methodology (post-processing on time history results)	Constrained to standard freq-domain fatigue assessment methods			
	Element stress time histories to count cycles at each stress range	Using PSD [†] statistics to obtain cycles at each stress range			
	Fatigue damage calculated via comparison to failure cycles (S-N curve, Miner's rule)				
	*CONTROL_IMPLICIT_MODAL_DYNAMIC	*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE *FREQUENCY_DOMAIN_SSD_FATIGUE			

Fatigue assessment: vibration load cases

• **Objective:** to pass the "GB 38031-2020 China Standard" — electric vehicle vibration load cases*, comprising the following sequence of tests (from Table 3 of the regulations):

^{*} for vehicle types M1 (passenger cars) and N1 (light goods vehicles, up to 3500kg)

Fatigue assessment: vibration load cases

• **Method:** implementing with LS-DYNA implicit solvers, using keywords:

GB 38031-2020 China Standard		Fatigue assessment for		
		Adhesive SOLIDs	Aluminium SHELLs	
Loading method	Random vibration	*CONTROL_IMPLICIT _MODAL_DYNAMIC X, Y, Z loading (analysed in the time domain)	*FREQUENCY_DOMAIN _RANDOM_VIBRATION_FATIGUE X, Y, Z loading (analysed in the frequency domain)	
	Fixed sine wave	*FREQUENCY_DOMAINSSD_FATIGUE X, Y, Z loading (analysed in the frequency domain)		

Analysed in the time domain to allow fatigue calculations using the *Sousa method* [1], requiring time histories of adhesive element stresses

Fatigue assessment: vibration load cases

- MATLAB script has generated random time signals from each PSD
- Time signal must be long enough to accurately capture the contents of the PSD
- A good check is then to create a PSD from the generated time signal, to compare to the original

Modal analysis results

From the modal analysis results...

Estimate the number of cycles within the load case ($n_{load\ case}$):

$$n_{load\ case} = (12*60*60) \text{ sec } *42.7 \text{ Hz} = 1,844,640 \text{ cycles}$$

Noting that the load case duration is 12 hours, and assuming vibration purely at the dominant modal frequency of the structure (42.7 Hz) †

Fatigue assessment: adhesive

The number of cycles to failure $(n_{failure})$ for the adhesive:

- Requires appropriate values of stress range to be mapped onto the adhesive S-N curve
- Sousa method: using an "effective stress", defined in a paper by Sousa et al [1]:

$$\sigma_{effective} = \sigma_{von \ mises} + \sigma_{hydrostatic}^{2} / \sigma_{von \ mises}$$

• This "effective stress" was found to correlate best to overall adhesive fatigue damage

Fatigue assessment: adhesive

- One of many methods for fatigue damage assessment
- Using the *Steinberg 3-band method*, which assumes a Gaussian distribution of stress
- The stress range is at:
 - the one standard deviation value ($1\sigma = RMS^{\dagger}$) of mean for 68.3% of the time
 - 2 σ for 27.1% of the time
 - -3σ for 4.3% of the time

[†] the Root Mean Square average of the stress time history

o = the value at **one standard deviation** on a Gaussian (normal) distribution

Fatigue assessment: adhesive

Using the Steinberg 3-band method

$$N_1 = 10 \frac{(\ln(1\sigma) - b)}{m}$$
 where $1\sigma = RMS(\sigma_{effective})$
 $N_2 = 10 \frac{(\ln(2\sigma) - b)}{m}$ $2\sigma = 2 * (1\sigma)$
 $N_3 = 10 \frac{(\ln(3\sigma) - b)}{m}$ $3\sigma = 3 * (1\sigma)$

$$n_{failure} = 1.0 / \left(\frac{0.683}{N_1} + \frac{0.271}{N_2} + \frac{0.043}{N_3} \right)$$

Fatigue damage

$$= \frac{n_{load\ case}*}{n_{failure}}$$

$$= \frac{\#cycles\ during\ the\ vibration\ test}{\#cycles\ at\ which\ adhesive\ will\ fail}$$

Note: Damage > 1 is a prediction of fatigue failure

Castra Sousa, F, Akhavan-Safar, A, Goyal, R, da Silva, L.F.M. Fatigue life estimation of single lap adhesive joints using a critical distance criterion: An equivalent notch approach . Mechanics of Materials 2021;153

Fatigue assessment: aluminium

Using the **Dirlik method**

- Embedded within LS-DYNA
- Converts the PSD into a PDF (probability density function)† to create stress ranges
- Using input exposure time (12*60*60 sec)
- Performs $n_{failure}$ and $n_{load\ case}$ calculations

Fatigue damage

 $=rac{n_{load\ case}}{n_{failure}}$

 $= \frac{\text{#cycles during the vibration test}}{\text{#cycles at which aluminium will fail}}$

Note: Damage > 1 is a prediction of fatigue failure

*CONTROL_IMPLICIT_MODAL_DYNAMIC

- Implicit <u>time-domain analysis</u> using modal superposition
- First computes a modal analysis (*CONTROL_IMPLICIT_EIGENVALUE)
- Applies the transient loading (using ***LOAD_BODY**, for X, Y, and Z separately)
- ZETA = modal damping ratio = $0.01 (1\%_{critical})$
- INTEG = computed with implicit time integration
- Uses modal superposition to obtain an overall response (a linear combination of the transient results), using all modes from *CONTROL_IMP_EIGENVALUE (NEIG)

- This modal transient approach is more efficient than a direct transient analysis
- Fatigue damage is calculated separately during post-processing, therefore an S-N curve is not given as input to LS-DYNA (refer back to the explanation of the *Steinberg 3-band method* and *Sousa method* for assessing the adhesive)

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

- Implicit <u>frequency-domain analysis</u> using modal superposition
- First computes a modal analysis (*CONTROL IMP EIG)
- Range of modes used for modal superposition
- DAMPF = modal damping ratio = $0.01 (1\%_{\text{critical}})$
- STRTYP, STRSF = using Von Mises stress, stress range
- TEXPOS = exposure time to the PSD (i.e. length of vibration test) = 12*60*60 = 43200 sec
- Using PSDs (g^2/Hz), with separate analyses for X, Y, Z
- **FATIGUE** option computes cumulative damage
- Fatigue analysis method (2 = Dirlik method)
- S-N curve to be applied to all aluminium parts

*FREQUENCY_DOMAIN_SSD_FATIGUE

- Implicit <u>frequency-domain analysis</u> using modal superposition
- First computes a modal analysis (*CONTROL_IMP_EIG)
- Range of modes used for modal superposition
- DAMPF = modal damping ratio = $0.01 (1\%_{critical})$
- STRTYP = using Von Mises stress
- LCFTG = the duration of each frequency during the vibration test = 1*60*60 = 3600 sec @ 24 Hz
- Acceleration @ 24 Hz, with separate analyses for X, Y, Z
- **FATIGUE** option computes cumulative damage
- S-N curve to be applied to all aluminium and adhesive parts (defined using ***MAT_ADD_FATIGUE**)
- SNTYP = using stress range

Fatigue assessment: considerations

- Sensitivity of fatigue damage results to inputs:
 - Modal damping -1%, 2%, 3% what is real/conservative?
 - Number of modes used in modal superposition -25, 50, 100 sufficient for a converged solution
 - Mesh resolution (number of elements), element quality sufficient for a converged solution
 - Analysis verification with sensitivity studies is recommended
- If fatigue damage is above/below targets:
 - Local structural modifications to increase/reduce stiffness/mass
 - Resizing or redistributing the adhesive bond area
 - In combination with other load cases (also needs to meet other requirements; crash, NVH, etc...)

Now to look at some example results ...

Fatigue assessment: stress results

Element stresses

- From Z PSD random vibration
- Aluminium peak

 3 = 24*3 = 72MPa

 (compared to yield
 360MPa)
- Adhesive peak

 3 = 7*3 = 21MPa

 (compared to bond
 shear failure 25MPa)
- the value at **one**standard deviation on a
 normal (Gaussian)
 distribution

Fatigue assessment: stress results

Fatigue assessment: damage results

Fatigue damage

- From Z PSD random vibration
- *In this example:*
- Aluminium
 predicted to fail
 locally before the
 adhesive bond
- However, the joint should be safe during enclosure's operational life

Fatigue assessment: adhesive damage

- Linear summation (6 load cases)
- For example, adhesive SOLID 265

Adhesive SOLIDs					
Fixed sine wave			Random vibration		
Z	Y	X	Z PSD	Y PSD	X PSD
(analysed in the frequency domain) *FREQUENCY_DOMAIN _SSD_FATIGUE		(analysed in the time domain) *CONTROL_IMPLICIT _MODAL_DYNAMIC			
Fatigue Damage 1E-15	Fatigue Damage 1E-35	Fatigue Damage 7E-7	Fatigue Damage 4E-6	Fatigue Damage 6E-26	Fatigue Damage 8.496
Fatigue Damage (summation - SOLID 265) 8.496					

Fatigue assessment: aluminium damage

- Linear summation (6 load cases)
- For example, **aluminium** SHELL 402788

Aluminium SHELLs					
Fixed sine wave			Random vibration		
Z	Y	X	Z PSD	Y PSD	X PSD
(analysed in the frequency domain) *FREQUENCY_DOMAIN _SSD_FATIGUE		(analysed in the frequency domain) *FREQUENCY_DOMAIN _RANDOM_VIBRATION_FATIGUE			
Fatigue Damage 0.000091	Fatigue Damage 0.000086	Fatigue Damage 0.000086	Fatigue Damage 0.301019	Fatigue Damage 0.092770	Fatigue Damage 0.311591
Fatigue Damage (summation - SHELL 402788) 0.706					

Fatigue assessment: overall methodology

Benefits of LS-DYNA implicit fatigue methodology

For adhesive fatigue assessment:

Transient thermal analysis

Coolant flow optimisation

Cell penetration analysis

Fatigue analysis

ARUP

PRIMER implicit setup tool

PRIMER connections tool

D3PLOT for d3rms, d3ftg, d3ssd

T/HIS for PSD results

REPORTER bespoke templates

Contact
David McLennan
Engineer, Arup

Senior Engineer, Arup

Emily Owen

Thank you!