Co-simulation in LS-DYNA FMU & SyC

Isheng Yeh

LS-DYNA Users Conference Nov. 2023

Agenda

- FMI, review and update
- SyC
 - Introduction to SyC
 - SyC in Is-dyna
 - How to run SyC
 - Using GUI
 - Using batch mode
- Summary and next steps

FMI

Ansys

FMI Interface

- Models of a system often have to be developed using different modeling and simulation environments.
 In order to simulate the complete system, the different programs have to interact with each other.
- The Functional Mock-up Interface (FMI) is a free standard that defines an interface to exchange dynamic models. It is supported by more than 150 tools.
- LDYNA/FMI integrates LS-DYNA with other tools and leads to new applications and business cases
 - Co-simulate with ANSYS/VRX, MOTION and Rigid Body Dynamics for the simulation of on-road vehicle dynamics, fatigue and active safety.
 - Co-simulation with Carmaker, MATLAB, Python, Adams etc. for AV design, controller design, optimization.
- Latest Is-dyna package: https://ftp.lstc.com/anonymous/outgoing/isheng/deliver/ FMU Manager 5.1 102823.zip 2023-10-28 12:32 219M

ANSYS CFX	\$	△ ■			2.0	
ANSYS DesignXplorer	\$	4		1.0		
ANSYS SCADE Display	\$	4	1.0 2.0	1.0 2.0		
ANSYS SCADE Suite	\$	4	1.0 2.0	1.0 2.0		
ANSYS Simplorer	\$	4	1.0 2.0	1.0 2.0	1.0 2.0	1.0 2.0
CarMaker	\$	△ ■			1.0 2.0	
CarSim	\$	4	1.0 2.0		1.0 2.0	
LS-DYNA	\$	♦ △ ■	1.0 2.0	2.0	2.0	2.0
MATLAB® Simulink®	\$	♦ △ ■	2.0		1.0 2.0	1.0 2.0
PythonFMU	@	△ ■	2.0	10120	110 [20]	

LS-DYNA/VRX/MOTION co-simulation for integrated safety & fatigue

Norma/ADAS

ADAS & Active safety

LS-DYNA/VRX/MOTION co-simulation for integrated safety & fatigue

Occupant kinematics, e.x..

Evaluation of active seatbelt

Acceleration/brake
Safety features control

Through FMI
Sensors, accelerometers:

Acc/brake

Veh. kinematics

LS-DYNAInteraction between Dummy, belt & bag

MATLAB
Control belt, bag, brake/acc

ANSYS/VRXVehicle dynamics before crash

W/o active seatbelt

Occupant leans forward due to deceleration

With active seatbelt

Occupant is secured in position be active belt

Chest compression

Head acceleration

Using Ansys ModelCenter to couple Is-dyna, Carmaker & PYFMI

Coupled w. Virtuos using FMI for Virtual Commissioning of forming tools

S. Heiland, etc. Technische Universität Dresden, Institute of Mechatronic Engineering "13th European LS-DYNA Conference 2021, Ulm, Germany "

SyC, System Coupling

Ansys

The Ansys Product Portfolio

Connect

Granta MI

Granta Selector

Granta MDS

optiSLang

Minerva

ModelCenter

Cloud

Ansys Cloud Direct

Ansys Gateway powered by **AWS**

Digital Twin

Twin Builder

Mission Engineering

STK

ODTK

TETK

Embedded Software

SCADE Suite

SCADE Display

SCADE Architect

SCADE Test

SCADE Lifecycle

Safety Analysis

Digital Safety Manager

medini analyze

medini analyze for Cybersecurity

medini analyze for Semiconductors

AV Simulation

AVxcelerate Headlamp

AVxcelerate Sensor

Structures

Mechanical

LS-DYNA

Forming

Motion

Sherlock

Additive Solutions

nCode DesignLife

Autodyn

Acoustics Simulation

Sound

3D Design

Discovery

Fluids

Fluent CFX

Chemkin-Pro

Forte

Rocky

FENSAP-ICE

EnSight

Turbo Tools

Polyflow

Model Fuel Library

Thermal Desktop

Electronics

HFSS

Maxwell

SIwave

Icepak

Motor-CAD

Q3D Extractor

NuHertz

EMC Plus

Charge Plus

Photonics

Lumerical FDTD

Lumerical FDTD Accelerator

Lumerical MODE

Lumerical Multiphysics

Lumerical INTERCONNECT

Lumerical CML Compiler

Semiconductor

RedHawk-SC

RedHawk-SC

Electrothermal

Totem

PowerArtist

RaptorH

RaptorQu

Exalto

VeloceRF

PathFinder

Path FX

Clock FX

Optics

Zemax OpticStudio

Zemax OpticBuilder

Speos

Concept of SyC, System Coupling for Ansys software

Ansys software supporting SyC: Fluent, CFX, Forte, AEDT, Maxwell, MAPDL, Fensap, ...

 Regions is mesh-based. In Is-dyna it can be defined through *SET_SEGMENT_N8.

	N1	N2	N3	N4	N5	N6	N7	N8
--	----	----	----	----	----	----	----	----

- Meshes of solvers don't have to be exactly the same. However, they have the represent the same geographical regions..
- *COSIM_SYC_INTERFACE is used to define data to be transferred from/to ls-dyna.

EQ.FORCE: Nodal force, import only.

EQ.PRESS: pressure for segments, import only.

EQ.INCDIS: Incremental nodal displacement from the last SYC time step, export only.

EQ.VEL <u>:</u> nodal velocity, export only

SyC Co-Simulation Management

- Execution synchronization
- Analysis evolution
 - Coupling Step
 - Coupling Iteration
 - Solver Step
 - Solver Iteration
- Collect, map and serve data
- Solution stabilization & acceleration
- Convergence checking
- Result & restart point creation and synchronization
- Error handling

Map Any* Scalar or Vector Variable in various ways

^{*}Any variable supported as input or output by participants

Possible application of SyC

• Electric arc:

- An electric arc is an electric breakdown of a gas that produces a prolonged electric discharge.
- Needs for simulation
 - Accurate predicate the current limiting effect
 - Accurate simulate the behavior of the running arc with Lorentz force
 - Accurate predicate the arc voltage
 - Accurate predicate the structure deformation

MRI induced heating of a pacemaker

 Flutter analysis for wings, risers, blades

Electric motor analysis

SyC in LS-DYNA

- Implicit: do data transfer for every implicit step, set the TimeStepSize in the PY file to Is-dyna's implicit time step.
- Explicit: no iteration for explicit, set the MaximumIterations=1 in SyC's PY file.
- Works for Linux and Windows; smp & mpi
- The results from the sample decks show that the SyC speed of Fluent/LS-DYNA and Fluent/APDL are about the same.
- Available in Ansys R222 & R241, see https://ftp.lstc.com/anonymous/outgoing/isheng/syc/
- R222 <u>syc2user083023.zip</u>
 - Use dynamic library. Therefore, not available in general version of Isdyna
 - The Isd-yna executables with SyC features are part of the package.
 - Can co-simulate with other Ansys solvers up to R232.
- R241 <u>syc2user_v241_110323.zip</u>
 - Use static library.
 - Coding is done and tested, waiting to be ported to the general version of Is-dyna

SyC GUI as a pre-processor

Participants are added by poking

 Participant coupling interface, execution , solution & output control can be defined

SyC GUI for simulation control

Co-simulation can be controlled by

SyC GUI for post processing

Poking

to bringing in Ensight for post-processing co-simulation results

Run SyC in batch mode, before GUI for Isd-dyna is available

- Syc of Ansys V222
 - SyC Executable: C:\Program Files\ANSYS Inc\v222\SystemCoupling\bin\SystemCoupling.bat
- SyC input file in PY format that defines
 - Convergence criterion and Max/min number of iterations
 - How often data transfer will take place, DatamodelRoot().SolutionControl.TimeStepSize = "0.0001 [s]"
 - Participants, or solvers, by their execution script and scp files:

```
FluentPart=AddParticipant(InputFile = os.path.join('Fluent_2', 'fluent.scp'))
```

- Interface: regions of which data transfer will take place

```
interfaceFM = AddInterface(
    SideOneParticipant = FluentPart, SideOneRegions = ['fsi'],
    SideTwoParticipant = LsdynaPart, SideTwoRegions = ['FSIN_1'])
```

Data to be imported/exported

A scp file and an execution script for each solver

- Each solver needs a scp file, in xml format, to
 - define the "regions" and their data to be exported or imported.
 - Specify the analysis type
 - LS-DYNA's scp file can be created by setting OPT of *COSIM_SYC_CONTROL to G

Variable SYCID OPT

 an execution script to specify its executable and input deck, e.g.,

Run the application

```
/opt/intel/compilers_and_libraries_2018.3.222/linux/mpi/int el64/bin/mpirun -n "$NPROCS" /data1/iyeh/impi18_syc/mppdyna i=input.k "$@"
```

```
<CouplingParticipant>
  <CosimulationControl>
    <Type>DEFAULT</Type>
  <AnalysisType>Transient</AnalysisType>
    <DisplayName>LSDYNA</DisplayName>
   <Variables>
      <Variable>
        <Name>INCD</Name>
        <QuantityType>Incremental Displacement</QuantityType>
      </Variable>
      <Variable>
        <Name>FORC</Name>
        <QuantityType>Force</QuantityType>
                                                Scp file
      </Variable>
    </Variables>
    <Regions>
      <Region>
        <Topology>Surface</Topology>
        <Name>FSIN 1</Name>
        <OutputVariables>
          <Variable>INCD</Variable>
        </OutputVariables>
        <InputVariables>
          <Variable>FORC</Variable>
        </InputVariables>
      </Region>
    </Regions>
  </CosimulationControl>
</CouplingParticipant>
```


Contents of tutorial package

Tutorial package

executables : Is-dyna executable

Manual : user manuals

multiple-participants : SYC deck: ls-dyna, mapdl, Fluent and CFX

OscillatingPlate : SYC deck: Is-dyna and a user-defined Fortran file

ReedValve : SYC deck: Is-dyna and Fluent

syc2user

Summary and Next Steps for SyC

Summary

- The latest FMI application was presented.
- SyC, a new co-simulation tool in LS-DYNA was introduced.
- The differences between these tools were addressed.
- Single-code simulation is still preferred, if available.

Next Step

- SyC is being implemented in general version of Is-dyna
- SyC's GUI will include LS-DYNA, that will lessen the effort of running SyC.
- Dependent on the interest of Is-dyna customers, more interface definitions and variables to be exchanged can be added.

Thank you Ansys

