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Introduction

• Thermoplastics are widely used in many industries

- Packaging solutions, consumer goods, medical devices, furniture, electronic devices, vehicles, …

- Predicted global production is 445.25 Mt in 2025 and 590 Mt by 2050 (Statista)

• To meet competition and sustainability agendas, the need for realistic constitutive polymer models has 
never been greater

- Ultrasonic processes, long duration loads, strain recovery and material damping
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Introduction
• Which strain range is relevant for a polymer product that is designed to withstand a 

certain load (keep its shape and function)?
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IKEA has been on a journey away from elastic-plastic models and towards rheological framework models
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Rheological Networks

• Elastoplastic models are good for predicting dislocation movement in crystalline metal 
structures

• Polymers are built up as chains with crosslinks, and the response is more like fluids with time, 
temperature and stress dependency

• Rheological network models on the other side are fundamentally closer to the micro 
mechanics of the polymer chain interactions
- Handles impact, stress relaxation, creep and recovery in any order and any time span by 

design

• Potential of consolidating many existing single purpose models of the same material into one 
material model
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Rheological Network Principle

• A base material is “split” in terms of stiffness into a number of “weighted 
contributions”

- 𝜎𝜎 = 𝑤𝑤0𝜎𝜎0 + 𝑤𝑤1𝜎𝜎1 + 𝑤𝑤2𝜎𝜎2 + ⋯ (stiffness contributions)

• Except for the “0th” contibution, impose stress decay by adding a damper

- �̇�𝜎𝑖𝑖 = �̇�𝜎0 − 𝛽𝛽𝑖𝑖𝜎𝜎𝑖𝑖 (viscoelasticity)

• If 𝛽𝛽𝑖𝑖 depends on the response itself, we have nonlinear viscoelasticity

- 𝛽𝛽𝑖𝑖 = 𝐸𝐸
𝜎𝜎𝑖𝑖

̇𝜀𝜀𝑖𝑖 ̇𝜀𝜀𝑖𝑖 = 𝜎𝜎𝑖𝑖
𝜎𝜎∗

𝑝𝑝∗
𝑞𝑞∗ + 1 𝜀𝜀∗ + 𝜀𝜀𝑖𝑖

𝑞𝑞∗

1
𝑞𝑞∗+1

(Norton-Bailey creep)

𝛽𝛽1 𝛽𝛽2 𝛽𝛽3 𝛽𝛽𝑛𝑛

𝐸𝐸𝑤𝑤1 𝐸𝐸𝑤𝑤2 𝐸𝐸𝑤𝑤3 𝐸𝐸𝑤𝑤𝑛𝑛 𝐸𝐸𝑤𝑤0

𝐸𝐸

• Each contribution is “activated” at certain “range” of stress and strain levels

- 𝑝𝑝∗ = 1 corresponds to linear viscoelasticity while 𝑝𝑝∗ ≫ 1 corresponds to 
perfect plasticity with 𝜎𝜎∗ as yield

• With sufficiently many contributions, with each contribution spanning 
independent ranges of stress and time, many loading scenarios can be 
considered

• This extension from linear to nonlinear viscoelasticity was popularized by 
Jörgen Bergström and is the principle behind *MAT_ADD_INELASTICITY

• An important aspect is the ability to fit the model to experiments, which 
requires a simulation on its own (Mcalibration)
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Motivation

• Goal for IKEA is to model time dependency within the functional range of a 
thermoplastic furniture component
- Strains below uncontrolled yield in layman terms

• Concerns with existing approaches
- Generic problems fitting experiments including both strain-rate variation and stress 

relaxation at varying stress levels
- Lack of mimicking natural recovery after unloading

• Increasing number of links is unattractive as the number of parameters grow and 
makes the fitting procedure unnecessarily complicated

• Two discoveries constitute the base for a proposed model in this context
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Motivation

• To achieve the basic anatomy of a thermoplastic tension test, highly nonlinear stiffness 
is required for low strains
- Typically, not applicable with a classical hyper-elastic approach

• Fitting relaxation tests at both low and high stress seems impossible
- The dampers need more degrees of freedom

𝜀𝜀

𝜎𝜎

𝜎𝜎𝜎𝜎

𝜎𝜎 𝜎𝜎 𝜀𝜀𝜀𝜀

̇𝜀𝜀̇𝜀𝜀
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Generalization of Spring and Damper Response
• Allow both springs and dampers to be influenced by the level of strain

• Improvements were observed, without the need for more links

I n c r e a s i n g   A c c u r a c y  a n d  C o m p l e x i t y

̇𝜀𝜀 = 𝐴𝐴𝜎𝜎 ̇𝜀𝜀 = 𝐴𝐴𝜎𝜎𝑚𝑚 ̇𝜀𝜀 = 𝐴𝐴𝜎𝜎𝑚𝑚(𝜀𝜀)

Linear 
Viscoelasticity

Generation 3Nonlinear 
Viscoelasticity

Linear Elastic Hyperelastic Highly Nonlinear

Newtonian Non-Newtonian Strain-Dependent

𝜎𝜎 = 𝐸𝐸𝑠𝑠𝜀𝜀𝑒𝑒 + �𝜀𝜀𝑒𝑒 𝐸𝐸𝑒𝑒 − 𝐸𝐸𝑠𝑠 ln cosh
𝜀𝜀𝑒𝑒
�𝜀𝜀𝑒𝑒

𝑚𝑚 = 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑒𝑒 −𝑚𝑚𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡ℎ
𝜀𝜀𝑣𝑣
�𝜀𝜀𝑣𝑣

̇𝜀𝜀𝑣𝑣 =
𝜎𝜎
�𝜎𝜎

𝑚𝑚
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Implementation

• Inspired by the conceptual outline, a 3D constitutive model was implemented

• Hypo-elasto-viscoelastic approach, using an incremental formulation

- �̇�𝝈 = 𝑪𝑪 𝜀𝜀𝑒𝑒 �̇�𝜺 − �̇�𝜺𝑐𝑐

- 𝐸𝐸 𝜀𝜀𝑒𝑒 = 𝐸𝐸𝑠𝑠 + 𝐸𝐸𝑒𝑒 − 𝐸𝐸𝑠𝑠 tanh 𝜀𝜀𝑒𝑒
�𝜀𝜀𝑒𝑒

- �̇�𝜺𝑐𝑐 = 𝑡𝑡
𝜎𝜎eff

�𝜎𝜎

𝑚𝑚 𝜀𝜀𝑐𝑐 3

2

𝒔𝒔

𝜎𝜎eff

- 𝑚𝑚 𝜀𝜀𝑐𝑐 = 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑒𝑒 −𝑚𝑚𝑠𝑠 tanh 𝜀𝜀𝑐𝑐
�𝜀𝜀𝑐𝑐

• A total of 22 material parameters
- 𝐸𝐸𝑠𝑠𝑖𝑖, 𝐸𝐸𝑒𝑒𝑖𝑖 , 𝜈𝜈𝑖𝑖, ̅𝜀𝜀𝑒𝑒𝑖𝑖 for 𝑖𝑖 = 1,2,3

- 𝑡𝑡𝑖𝑖, �𝜎𝜎𝑖𝑖, 𝑚𝑚𝑠𝑠
𝑖𝑖 , 𝑚𝑚𝑒𝑒

𝑖𝑖 , ̅𝜀𝜀𝑐𝑐𝑖𝑖 for 𝑖𝑖 = 1,2

Part of the pragmatism lies in steering away from 
using deformation gradients and a total 
formulation, and not impose thermodynamic 
restrictions that may result in unnecessary cost and 
inability to capture the characteristics of real-world 
materials, but instead follow the traditional ls-dyna 
approach, allowing for a relaxation of theory and 
assuming that with proper material testing and 
parameter fitting the resulting material model will 
in practice be physically justified
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Parameter Fitting

• To make proper use of a material model of this complexity, fitting test data is crucial

- Using some kind of optimization tool is inevitable, here MCalibration from PolymerFEM is the product 
of choice

• Tests of thermoplastics are variants of the anatomy shown above

- The objective of the material model is the ability to match all types of IKEA thermoplastics for all 
types of loading scenario occurring in everyday use

• PolyPropylene and PolyOxyMethylene were used, with strain levels below necking

PolyPropylene

PolyOxyMethylene
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PP                                                  POM

PP                                                  PP

POM                                                POM

PP                                                  PP

POM                                   POM

Tensile tests at 800mm/min and 50mm/min
Relaxation tests at 800mm/min with 20h 
relaxation and 4h recovery
Loading/unloading tests at 800mm/min 
without relaxation but with 4h recovery
Fitting error is 3.22% (PP) and 3.36% (POM)
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Comparison to MAI and TNM

• To assess the results of fitting, the 
same was done to a 5-link MAI 
network and the TNM model for POM

• While MAI isn’t even visually 
promising, TNM shows overall decent 
results except for the inability to 
properly represent recovery (A) and 
relaxation (B,C)

• The error in these fits are 9.38% 
(MAI) and 6.05% (TNM), concluding 
that the proposed model is superior 
in the context of fitting the 
investigated thermoplastics

MAI

TNM



13 ©2023 ANSYS, Inc.

Application Examples

• The application examples serve the purpose of testing the model for robustness, speed 
and accuracy by comparing it with commercially available correspondents

• Indicative speed up when compared to MAI and TNM is roughly a factor of 3

• No robustness issues thus far, and results compare visually well with TNM
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Application Examples

• The application examples serve the purpose of testing the model for robustness, speed 
and accuracy by comparing it with commercially available correspondents

• Indicative speed up when compared to MAI and TNM is roughly a factor of 3

• No robustness issues thus far, and results compare visually well with TNM and MAI
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Summary

• The industry is constantly demanding more sophisticated polymer components to meet 
competition and sustainability agendas

• Established material models within the family of rheological frameworks are widely adopted due 
to their natural capability to mimic time effects in polymers

• A few shortcomings in commercial models have been presented and addressed in this paper, 
by means of proposing an alternate (pragmatic) constitutive approach to the rheological 
framework

• The proposed model shows highly desired accuracy combined with efficiency and robustness 
necessary for conducting the application simulations

• Some issues remain to be resolved, but the overall assessment is that the model is a promising 
candidate for virtually representing a wide variety of thermoplastics
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